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Introduction 

The balance between carbon (C) sequestration (or storage) in various sinks like soils and 
vegetation, compared to that released to the atmosphere as carbon dioxide (CO2) is currently very 
topical given the future greenhouse/climate change projections. However, there is a considerable 
degree of uncertainty surrounding what options are available, how realistic they are and more 
specifically (from a soils' perspective), what role does soil C play in mitigating the effects of CO2 
emissions. This paper tries to place soil C in a global perspective and assess how realistic it is for 
significant soil C sequestration to occur in different land use systems. In order to do that, we need 
to provide some background on soil organic matter, which is the main soil C pool we can influence 
through land management. This will consider the different forms of organic C in soil, how they can 
be measured and the role they play in determining soil functions and properties.  

Soil as a C sink 

Carbon stored in soils worldwide represents the 3rd largest sink in existence, after oceans and 
geologic sinks. There is 2-4 times as much C stored in soils as there is in the atmosphere and 
approximately 4 times the C stored in vegetative material (i.e. plants). It is therefore 
understandable that the soil C sink is being viewed as one that could potentially have a significant 
impact on sequestering CO2 emissions.  However, before we consider how feasible it is to store 
extra C in soil, it is essential to understand the forms in which soil C exists.  

Soil C is found as either inorganic (i.e. mineral) or organic materials. Inorganic soil C is generally 
found as carbonates of calcium (CaCO3, or limestone) and magnesium (MgCO3). Excluding 
concentrated deposits of these materials that arose from deposition of the shells of aquatic 
invertebrates, the majority of these inorganic forms of C are found in alkaline soils, with local 
examples being the heavy clay soils of inland Queensland and northern New South Wales. 
Calcium carbonate is effectively insoluble in water at pH > 8.3, so when these extreme conditions 
are met (typically in subsoils) of the black and grey cracking clays, CaCO3 precipitates out of the 
soil solution to form whitish nodules embedded in the clay soil. Whilst these inorganic forms of C 
can represent a significant amount of the C stored in the profile of these particular soils in some 
areas, they are a significantly smaller store of C than that found in the organic form. 

The organic forms of C in soil are a very diverse group of materials that can be defined as 
‘everything in or on the soil that is of biological origin, whether it’s alive or dead”. It therefore 
includes live plant roots and litter (not shoots), humus, charcoal and other recalcitrant residues of 
organic matter decomposition. It also includes the organisms that live in the soil that are 
collectively called the soil biota (e.g., fungi, bacteria, mites, earthworms, ants and centipedes). The 
one thing all these materials have in common though is that they all contain C, and so you will 
generally here people talking interchangeably about soil organic matter and soil organic C. On 
average, organic matter in soil contains 58-60%C, so if a soil contains 1% organic C from a soil 
test you can estimate that about 1.7% of the soil by weight is organic matter. 

Forms of organic matter and C in soil 

Soil organic matter is ultimately derived from decomposing plant material, with that decomposition 
driven by the soil biota for which the plant material and decomposition products are the primary 
source of energy and nutrients.  In the process of this decomposition, populations of different  
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components of the biota wax and wane in response to abundance (or otherwise) of their preferred 
food source and predation by other organisms. 
 
 
 
Similarly, the abundance and age of different components of soil organic matter fluctuate in 
response to the quality and quantity of inputs (i.e. residue type and frequency of addition) and the  
influence of moisture and temperature on the decomposing organisms. 
 
The principal components of the non-living soil organic matter pool are shown in the schematic 
above, along with an indication of the ‘half lives’ for material to progress from one pool to another. 
Obviously this time varies somewhat with environmental conditions that influence microbial activity 
like temperature and available moisture, with the decomposition process slowed enormously by 
cold temperatures (think North American prairies or Russian steppes) and low annual rainfall. This 
time scale is useful for thinking about both the decline in soil organic matter that occurs under 
exploitive land uses and also the time to replenish soil organic matter stocks (especially the more 
stable compounds like humus) under natural conditions. 
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Fate of C and nutrients during transformations 

Interestingly, as the microbial decomposition process occurs, C and some nutrients are liberated. 
The C is released as carbon dioxide (or methane under certain conditions) due to microbial 
respiration and surplus nutrients are released (mineralised) in inorganic forms suitable for use by 
other microbes and plants. 
 
However, soils are generally nutrient-poor environments so as the decomposition process occurs 
and the organic materials age in the soil, there is generally more C released as CO2 than there are 
surplus nutrients released (i.e. a fungus needs 8 C atoms for every N atom to grow more hyphal 
threads, but can digest poor quality crop residue with a C:N ratio that starts at 100:1). As a result, 
surplus C is respired while the N is conserved, and through the aging process in soil the organic 
materials become increasingly nutrient rich. This enrichment of nutrients in humus and more 
recalcitrant,  charcoal-like materials occurs particularly with N and sulphur (S). The humus that 
eventually forms from decomposition of, say, cereal straw will have C:N ratios of approximately 
12:1, rather than the 100:1 in its original form. After so many cycles of digestion and excretion 
these materials are less readily decomposed than when they entered the soil as plant residue, but   
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the nutrients they contain ensure that they remain a valuable source of nutrients contributing to soil 
fertility. 

A good example of biological nutrient cycling and release for plant utilisation is shown in relation to 
N in the above diagram. Bacteria or fungi growing on plant residues are predated by a number of 
more complex organisms like free living nematodes, which typically have higher C:N ratios than the 
organisms on which they feed. The excess N in this case will be released in an inorganic form 
(either ammonium-N or nitrate-N) for use by plants or other organisms. This inorganic N can build 
up as decomposition continues (if it is surplus to requirements of the microbial community) and will 
form the basis of the N supplied to the next crop. The lower the C:N ratio of the material being 
decomposed (i.e. humus v fresh cereal straw) the more likely there is to be net release of mineral 
N. 

The converse of this though, is that if we want to raise soil organic C levels by increasing soil 
organic matter (rather than adding a relatively inert material like coal dust, for example), we will be 
tying up nutrients. As an example, an increase in soil organic C content of 1% (i.e. from soil C of 
1% to 2%) will require 900-1500 kg N/ha and 70-120 kg P/ha to be available to form that organic 
matter. If the soil has a low fertility status (e.g. is run down in N), then that soil organic matter 
cannot increase unless the N is provided (e.g. a legume-based pasture). Similarly, soils that have 
low P status will struggle to raise soil organic matter levels unless that P deficiency is overcome, 
just as legumes will struggle to persist in pastures and fix N. Understanding these concepts is 
important to provide a realistic perspective on what is achievable and at what cost in the soil C 
sequestration debate. 

Relative sizes of the different C pools 

The size of the overall C pool in soils can be misleading as an indicator of how that soil will 
behave, unless we understand something about the relative proportions of the different ‘pools’ in 
which that C can be found. For example, soils that have differing proportions of soil as particulate 
organic matter (relatively young, labile material), humus and recalcitrant compounds like charcoal 
will behave very differently – both in terms of properties and the microbial communities (and 
resulting functions) they can support. Soils supporting open grasslands will have proportionally 
more char-like material in their native condition, from regular natural burning events, than similar 
soil types under a rainforest, for example. Similarly, soils in the sugar industry from areas where 
regular trash burning occurs can also have high (up to 50%) of soil C as charcoal, compared to 
much lower proportions with a long term history of trash blanketing.  
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These proportions are important. Consider the soils shown in the example above, where soil is 
examined at two times in its management history – once during the continuous cropping phase and 
a second occasion after further cropping and then an 8-10 year period under pasture. If simply 
analysed for total organic C, both soils would appear very similar. The amount of resistant/char like 
material is unchanged (remember – a half life of centuries). However, while there has been a large 
increase in the particulate/labile fraction in response to the pasture, the amount of humus 
(decades-centuries to form) is much lower and still reflective of the end of the cropping rundown 
period. This means that (i) the long term soil nutrient stores have not recovered, and (ii) that this 
soil organic matter will decline much more rapidly if the land is returned to cropping. In fact, the 
original rate of soil organic matter decline would effectively double in the next cropping phase and 
much more frequent pasture phases would be needed to maintain soil productivity. While this is a 
hypothetical example from simulation studies, we have observed the rapid decline in soil organic 
matter after pasture leys in our own trials in the inland Burnett. 

Soil C measurement 

The commercially available techniques for measuring and monitoring soil C, or more importantly 
components of the soil C pools, are currently limited. Total soil C measurement, either by 
combustion or by Heanes wet oxidation, provide realistic measures of total C status. Most routine 
soil tests report soil organic C measured using the Walkley-Black wet oxidation technique, but this 
only measures 70-90% of the total soil organic C, depending on soil type. Both wet oxidation 
techniques will only measure the organic C, which is a clear advantage they have over the 
combustion methods. This can be particularly important when measuring soil organic C on high pH 
soils like the Vertosols, where subsoils can contain a lot of inorganic C as CaCO3, and require acid 
pre-treatment before total C analysis using combustion. None of these techniques can quantify 
charcoal or other recalcitrant C materials, or the humus or particulate organic matter pools, so they 
are relatively uninformative in terms of measures of soil C quality. There is hope that recent 
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developments in infrared spectroscopy will allow a cheap and relatively rapid assessment of the 
components of the soil organic matter pools.  
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There is an explosion of interest in measuring the soil biological activity, either via measuring 
things like microbial biomass C or measuring general or specific enzyme activities that can be 
attributed to the microbial community (e.g. fluorescein diacetate - FDA). However all of these 
techniques have limitations in that they are unable to detect changes in microbial diversity. They 
are also extremely dynamic in response to changing moisture and temperature conditions, as well 
as the availability of food sources (e.g. sampled in a fallow, during a crop or just after tillage). While 
there is much interest in using molecular techniques to measure changes in soil microbial diversity, 
there is a lot of work to be done before these techniques are available and measures of diversity 
can be linked to soil health and functionality.  

Why does soil C decline? 

Soil organic C represents an equilibrium condition reflecting the balance between C inputs (as 
residues, roots etc) and C mineralisation and loss as CO2 – for a given climate and soil type. We 
often hear about declining soil organic matter and C stores in cropland, because the change from a 
native pasture or woodland to cropping has meant a relative reduction in C inputs and an increase 
in carbon removed in harvested products and by gaseous loss. The result is a slow shift towards a 
new (lower soil C) equilibrium position. This changed position will reflect a new balance between 
inputs and losses, and particularly under rainfed cropping conditions (even under the best 
conservation tillage techniques) will be significantly lower than under native vegetation or 
grassland. This is logical, as while native vegetation or pastures use every available drop of 
moisture to grow biomass and fix atmospheric C all year round, there are periods (in recent years 
some of those periods have been quite long!) where crops aren’t growing but microbes are 
decomposing soil organic matter. Moreover, the disturbance associated with tillage accelerates the 
rate of organic matter and residue decomposition, primarily by making more of the organic matter 
available to soil microbes for breakdown.  

How can soil C be restored? 

If we wish to change soil organic C status, presumably in order to improve soil health and the 
productivity/profitability of the enterprise, there has to be a shift in the balance between inputs and 
losses. In other words, we have to increase the inputs while minimising losses. This looks simple, 
but can become quite complicated when economic imperatives and climatic limitations are added 
to the equation. 

Increasing C inputs can generally be achieved by increasing productivity (more biomass grown 
generally = more residues returned), and to a lesser extent, by using soil organic amendments if 
available (although this means that C is being removed from their site of origin). However, it is 
worth considering the size of the C pool to get some perspective on the use of either strategy, but 
particularly that of organic amendments. A black cracking clay with 1% organic C will contain 
approx. 10 t C/ha in the top 10cm layer, while a 5 t/ha grain sorghum crop will return approx 10 t/ha 
organic matter as roots and surface residues (about 4 t C/ha). Contrast that with applying 5 t/ha of 
feedlot manure (say 30% C) once every 5 years or so, and you can understand why soils where 
growers have adopted a manuring strategy often have similar soil organic C to those who have not.  
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Perhaps the most effective strategy is to grow something in the soil as often as possible (e.g. 
opportunity crop, perhaps including green manure cropping, or convert land from annual cropping 
to pastures- perennial being more effective than annual) to make best use of the available moisture 
to grow biomass. Of course, the economics of that will be determined by how much you are paid to 
grow that biomass, or can make from a grazing enterprise versus cropping! 

Reducing losses presents a conundrum, as many of the functions of a healthy soil are provided by 
microbial activity during organic matter decomposition. In other words, we want to control the rate 
of decomposition, perhaps better matching that rate to the soil type and climate, rather than 
stopping decomposition and CO2 emissions altogether. Good examples from cropping include 
retaining crop residues in the soil by eliminating burning and reducing tillage, while the equivalent 
in grazing systems would involve optimisation of grazing pressures through manipulating stocking 
rates. Again, combinations of economic pressures and climatic sequences will have a big impact 
on the practicality and effectiveness of these strategies.  

An interesting approach gaining publicity at present lies in the conversion of organic wastes and 
crop residues into relatively inert C compounds by pyrolysis to create biochar, and then adding this 
to soil. While economics will ultimately decide the feasibility of this strategy, it is worth 
remembering that inert materials like biochar have long residence times in soil because they are 
relatively recalcitrant to soil microbial decomposition. This may make them attractive to proponents 
of char as a way of sequestering C in soils, but at what cost? All that biological nutrient cycling, 
building of soil structure and disease suppression that are characteristic of a healthy soil could be 
compromised by converting what are already scarce resources in soil (organic matter inputs) into 
more expensive and relatively inert organic matter inputs. Amendments like biochar (which needs 
to be produced under carefully controlled pyrolysis conditions - chars ain't chars!) can provide 
other benefits (e.g. immobilizing toxic Aluminium in acidic soils), but the impact of these benefits is 
restricted to some ‘special case’ combinations of soil types and climate and should not be 
extrapolated across all agricultural soils.  

Conclusions and practicalities 
 
Organic C and organic matter are the keys to healthy soils that are able to support productive and 
sustainable land uses – both in agricultural and natural ecosystems. As we have discussed in this 
article, it is therefore very dangerous to consider soil and soil organic matter simply as a potential 
sink for impounding excess CO2. As Janzen (2006) describes, ‘soil organic matter effectively 
constitutes a relentless flow of carbon atoms moving through a myriad of streams – some fast and 
some slow – wending their way through ecosystems and driving biotic processes along the way’. In 
other words, it is the flow of C through soils, rather than it’s sequestration in soils, that are the keys 
to healthy soils and sustainable land use systems. We therefore will gain greatest benefits out of 
increasing the inputs of carbon and organic matter to soils by growing better crops and pastures 
more often. There is no doubt that equilibrium soil C contents can be increased by combinations of 
practice change and land use, but the extent to which this can contribute to reducing the rate of 
increase in atmospheric CO2 is unclear and will ultimately be determined by imperatives of global 
food supply. In the interim, producers should remember that within a given land use, the systems 
that result in the greatest productivity (and often the most efficient use of scarce resources to grow 
biomass) will ultimately have the greatest benefits for soil C and soil health.  


