

Making money in good seasons

Dunblane field day Tuesday 11th October 2011

Stocking rate is a critical profit driver

Stocking rate is a critical profit driver

It is more important than

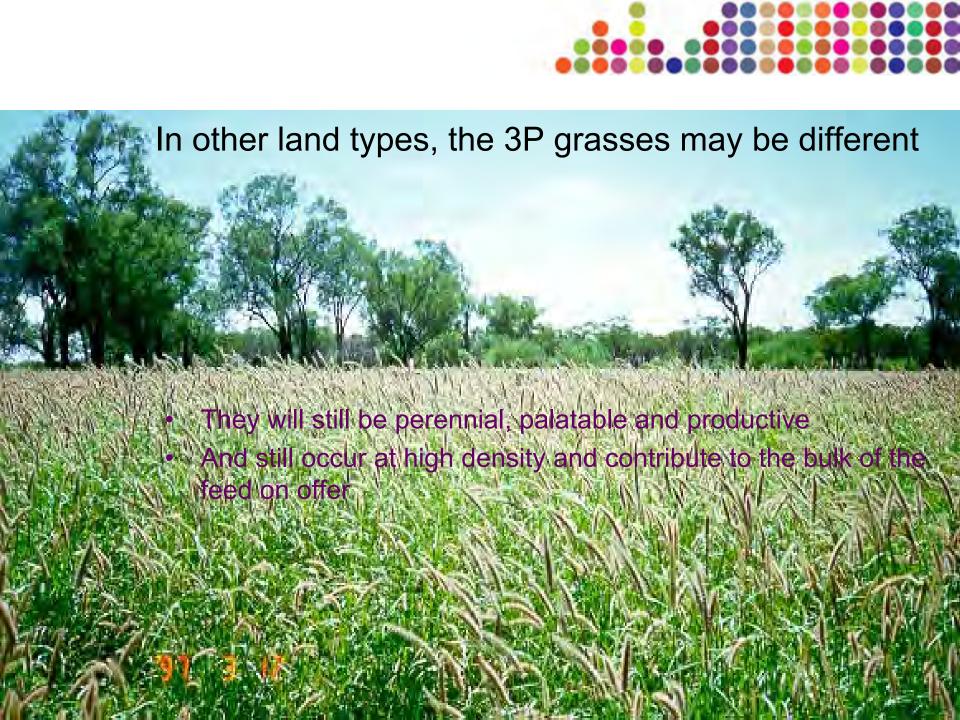
- genetics
- breed
- animal type

The ability to adjust stocking rates to match the season – especially increasing stock numbers in the good seasons depends on:

- Land condition
- Feed on offer
- Confidence in the season holding
- Desire to improve land condition/recover from drought
- Attitude to risk (e.g. caution over the next drought)
- Availability of stock

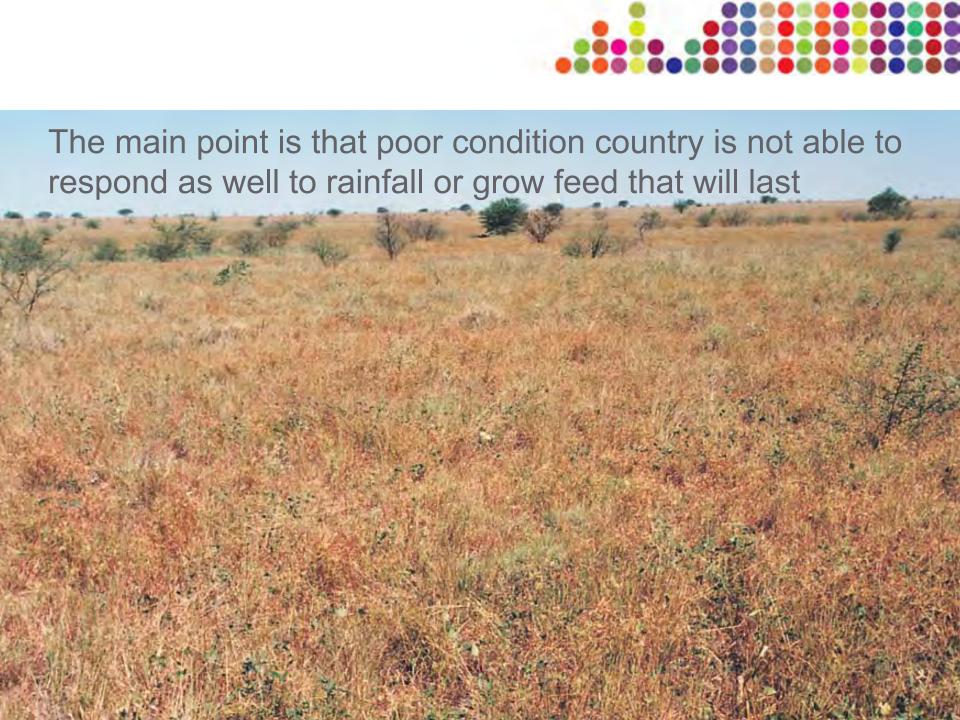
Good seasons provide the opportunity to:

- Increase stocking rates
- Improve land condition
- Prepare for the next drought through land condition and finances i.e. build business resilience
- Paddocks in good to fair (A to B) condition can carry extra stock safely, due to the extra feed on offer
- Paddocks in poor (C) condition can be improved, to take advantage of future good seasons


To recap from this morning, land in good condition:

- Is dominated by 3P (palatable, productive and perennial) grasses
- In Downs country, there is a high density of vigorous Mitchell grass tussocks (a tussock every 1-2 paces)
- Has a range of other plants
- Directs rain into the soil
- Most efficiently converts rainfall into pasture
- Will grow 80-100% of the potential feed in response to rain
- Will carry the most stock in the long and short term
- Is more likely to recover from severe drought
- Provides more options
- Is a key profit driver in both the short and long-term through stocking rates

Land in good condition grows more feed because there is a good density of healthy 3P grasses able to use the rain and seek out soil nutrients – rain is used most efficiently


Stocking rate strategies for good condition paddocks

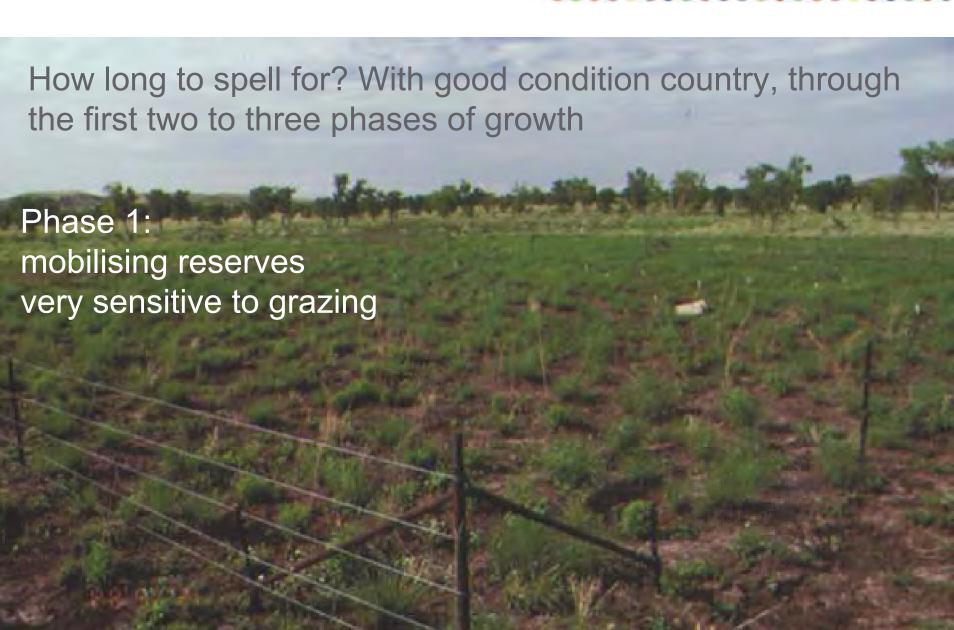
- Increase stocking rates to take advantage of good seasons
- Decrease stocking rates in poor seasons to maintain land condition
- Infrequent early wet season spelling to improve the mix of species, especially in sheep paddocks
- Occasional winter rain spelling to encourage herbage, especially in sheep paddocks
- Follow heavy grazing with early to full wet season spelling to prevent loss of land condition e.g.
 - When Mitchell grass grazed down too low (10 cm or less)
 - When Mitchell grass grazed heavily in previous wet season
 - After pugging
 - Following fire
 - Following baling

To recap from this morning, land in poor (C) condition:

- Has few 3P (palatable, productive and perennial) grasses
- A low density of Mitchell grass tussocks (one every 20-30 paces)
- Other plants dominate, often unpalatable ones
- More rain runs off over the surface, less into the soil
- Converts a limited amount of rainfall into pasture
- Will grow about 45% of the potential feed
- Often can't carry stock for 12 months and has low potential numbers in the long-term
- Is less likely to recover from severe drought
- Provides few options for livestock
- Leads to reduced profits due to reduced stocking rates

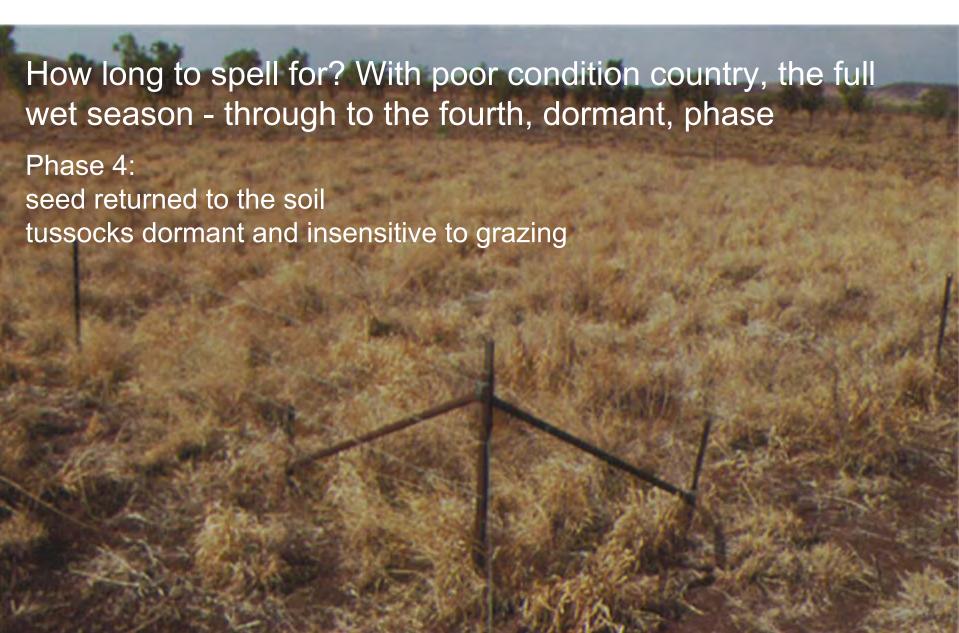
Poor land condition = poor productivity and poor returns on your non-renewable asset (your land)

e.g. estimated impact on profit before tax, because of reduced carrying capacity in the early 2000s:


	Carrying capacity (head)	Profit before tax (\$)	
Good condition	503	35,210	
Poor condition	227	15,890	

Stocking rate strategies for poor condition paddocks

- Conservative stocking rates in good seasons
- Plus frequent full wet season spelling to improve land condition
- Rapidly reduce stock numbers during drought to prevent further degradation
- Wet season spelling is followed by dry season grazing
 - to stimulate the Mitchell grass plants to respond and to keep the business profitable
 - 'wet season grazing rest'



Phase 3:

Tools to assist with adjusting stock numbers

- Benchmarking:
 - land condition
 - current stocking rate against historical stocking rate or long-term carrying capacity
- Feed budgeting know your animal intake and feed on offer
- Monitoring land condition, residual yield, forage quality, Mitchell grass vigour, Mitchell grass seed production, seedling establishment
- Climate and pasture growth information, probabilities and forecasts

Benchmarking stocking rate against historical averages or long-term carrying capacity

- Know how you are travelling compared with your recent and longer history
- Know how you are travelling compared with your potential
- Be prepared and ready to exceed your historical average or your long-term carrying capacity
- Long-term carrying capacity can be exceeded in good years so long as prepared to quickly reduce stock numbers in poor seasons
- Economic studies for the Mitchell grasslands estimate that being responsive to the feed on offer can improve whole property Gross Margin by up to 25% in the long-term
- This is not promoting overgrazing it is about making sensible use of the feed on offer and still protecting your land condition

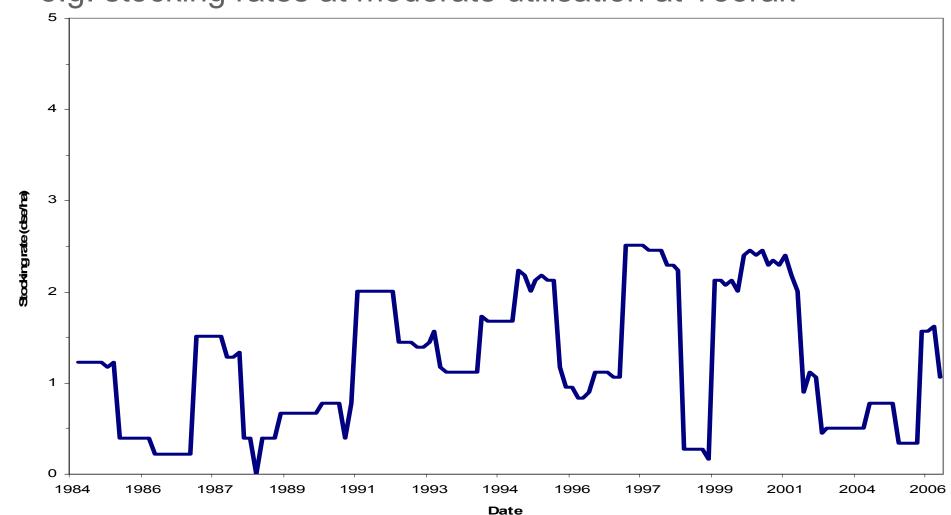
Historical stocking rates

Historical stocking rates

- Your own historical SR should be the simplest to calculate based on your own stock records
- You need to ensure that you compare apples with apples by bringing all stock types back to a standard such as:
 - DSE (dry sheep equivalent) a dry 50 kg sheep
 - AE (Animal Equivalent) a dry 450 kg beast
 - LSU (Livestock Unit) a dry 400 kg beast
- AE tables have been provided in your handouts

Calculating long-term carrying capacity

- The long-term carrying capacity is based on the average pasture growth for the land types within a paddock accounting for:
 - Land condition
 - Tree cover
 - Safe utilisation rate
 - Demand of different types of animal
 - Evenness of grazing within the paddock e.g. excluding inaccessible areas within a paddock and discounting for distance from water
- Can be done within the Stocktake software, in spreadsheets or manually
 - Training is available e.g. GLM workshop
 - Fact sheets and possibly YouTube guides will be available within six months



Long-term carrying capacity can be exceeded

- Long-term carrying capacity can be exceeded in good years in paddocks that are in good condition;
 - our research suggests up to 40-50% above the long-term average is still safe
- Long-term carrying capacity is based on average pasture growth, and average rainfall (and other factors e.g. humidity)
 - if the year has 50% above average pasture growth, then can safely go above the long-term carrying capacity
- What can be achieved in any year depends on the feed present, on land condition and drought recovery
 - e.g. allow one full summer for drought recovery before increasing stock numbers

Long-term carrying capacity can be exceeded e.g. stocking rates at moderate utilisation at Toorak

Forage budgeting

- Existing forage supply
 - Depends on rain and land condition
- Anticipated forage supply
- Forage quality
 - Too many stock reduce the amount available to individual animals
 - Eating into stalk e.g. below 15-20 cm height reduces quality

Residual yields/tussock height targets for Mitchell grass

- Aim for a minimum of 15-20 cm at the end of the grazing period
- Grazing to 10 cm or lower will damage Mitchell grass tussocks
- If grazed lower, then spell in the next wet season

Residual yield during a run of good seasons

Factor in the effect of supplements when doing a feed budget

- Urea or protein supplements in the dry season:
 - Allow for 15–30% increase in intake
- Phosphorus supplements:
 - No adjustment necessary
- Energy supplements:
 - May reduce intake of pasture

Stocktake is a handy forage budget tool

Current stock numbers fro	om records: Cattle Nos Sheep I	Nos AEs		Print
DATES	PASTURE	ANIMALS		
and the second	Start Pasture Yield (kg/ha) 3240	Class	Number of Wet Stock	0
Start Date 1-Apr-06	Residual Yield (kg/ha) 1000	Class Bullocks	Number of Dry Stock	200
Target Date 1-Dec-06			Start Weight (kg)	500
	Unpalatable (% 10		Finish Weight (kg)	550
	Detachment (%)		Total Stock Numbers	200
			Adult Equivalents	225
	Estimate Pasture Growth (kg/ha) 0		Dry Matter Intake (% of AE)	2.2
		DMI increase with	supplement (%) (usually 15%)	0
Grazing Days 245	Useable Pasture (kg/ha) 1479	Amou	unt Pasture Eaten (kg/ha)	546

Monitoring

- Monitoring land condition, residual yield, forage quality, Mitchell grass vigour, Mitchell grass seed production, seedling establishment
- A range of information out there including the fact sheets and booklets provided today

Climate and pasture growth information, probabilities and forecasts

	Land Type Pasture Growth Tables	
	Central West Queensland	
Climate Zone		
	Barcaldine	
Land Type		
	Open Downs	
Soil type		
	Grey, brown and red cracking clays	

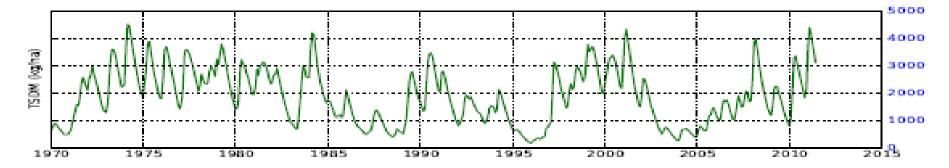
 Open Downs in fair to good condition grows an estimated 2300-3100 kg/ha of pasture in a year at Barcaldine

Mean Pasture Growth

Tree b asal Area	Annual Growth (last 109 years)	Annual Growth	Annual Growth	Annual Growth Land Condition D		
(m²/ha)	Land Condition A	Land Condition B	Land Condition C			
0	3100	2300	1400	600		
10	2300	1700	1000	500		
2	1800	1400	800	400		
4	1300	1000	600	300		
6	1000	800	500	200		
8	900	700	400	200		
10	700	500	300	100		
12	700	500	300	100		
15	600	500	300	100		
20	500	400	200	100		
Rainfall	491					

Probability of pasture growth at Barcaldine

- In the top 30% of years, fair to good condition country can grow 3200-4200 kg/ha
- In the lower 30% of years, expect 1300-1700 kg/ha

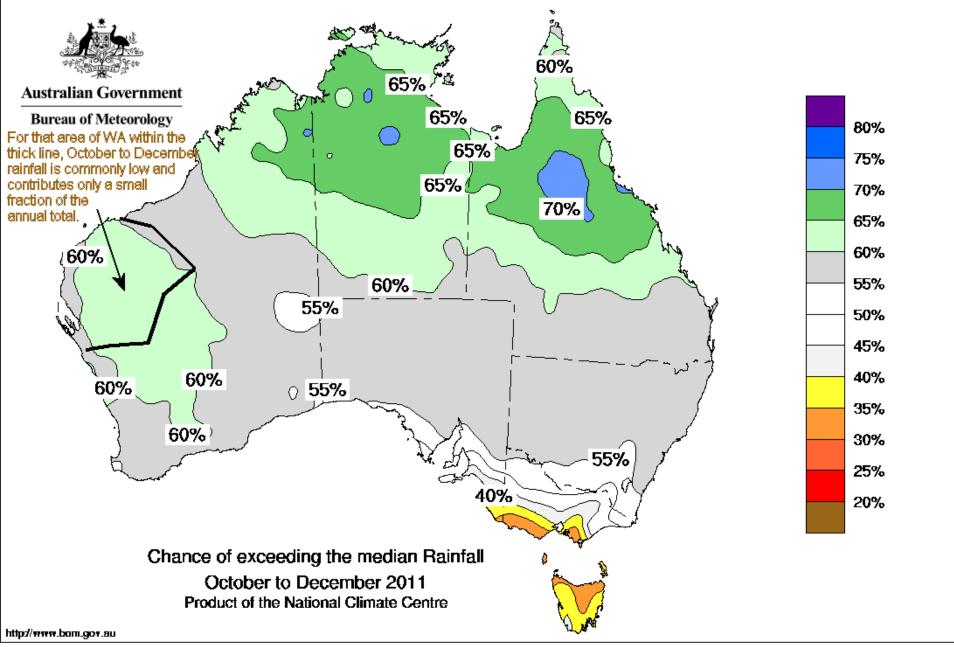

Pasture Growth by Rainfall Decile

Tree basal Area (m2/ha)	ni edian				70%				30%			
Land Condition	Α.	В	C	D	A	В	C	D	A	В	C	D
0	2800	2100	1300	600	1700	1300	800	300	4200	3200	1900	800
1	2000	1500	900	400	1200	900	500	200	3300	2500	1500	700
2	1600	1200	700	300	1000	800	500	200	2600	2000	1200	500
4	1200	900	500	200	800	600	400	200	1800	1400	800	400
6	900	700	400	200	600	500	300	100	1500	1100	700	300
8	800	600	400	200	500	400	200	100	1200	900	500	200
10	700	500	300	100	500	400	200	100	1000	800	500	200
12	600	500	300	100	400	300	200	80	900	700	400	200
15	600	500	300	100	400	300	200	80	800	600	400	200
20	500	400	200	100	300	200	100	60	600	500	300	100
Rainfall	441				373				594			

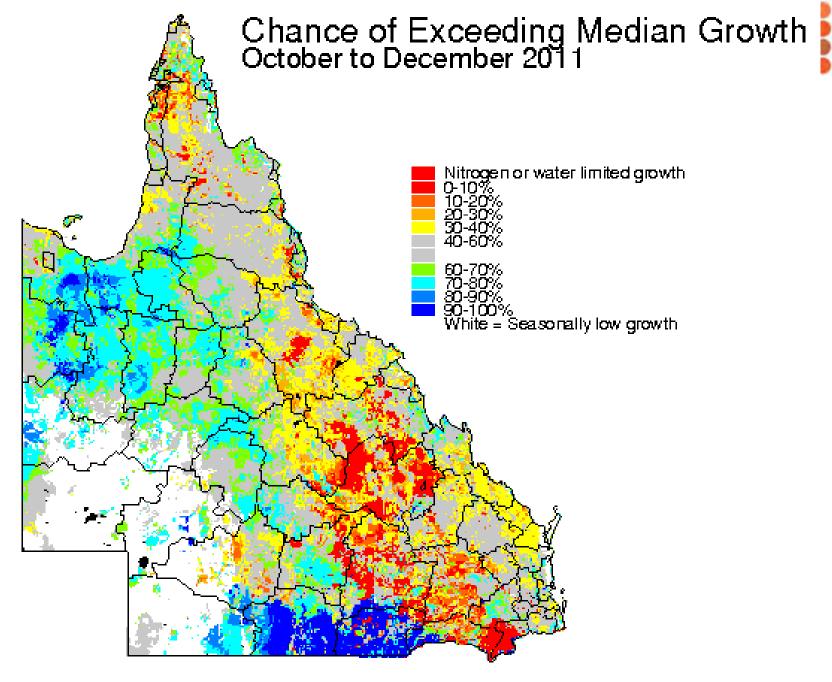
Forecasting and modelling tools

- Temper with common sense
 - e.g. at the moment, there are still high pasture yields and moisture in the soil
 - Barcaldine received 1001 mm for the 12 months ending in May 2011, which grew an estimated 3600 kg/ha of feed, about 1000 kg/ha more than the average

- The risks of a forecast of a good summer being wrong are not too severe – even average rain will produce good growth
- During drought, the risks of a forecast of a good summer being wrong are drastic


Latest Southern Oscillation Index values

- Date: 05 October 2011
- Average SOI for last 30 days: 11.7
- Average SOI for last 90 days: 8.0
- Monthly average SOI values:
 - **July** 9.1
 - August 2.6
 - September11.1


Odds firm for a La Niña in 2011

- World meteorology organisation, BOM and QCCE all agree
- "The continuing cooling trend in the central Pacific Ocean since early winter is consistent with a developing La Niña event."

Commonwealth of Australia 2011, Australian Bureau of Meteorology

Issued: 05/09/2011

Have effective systems in place

- Plan strategically and implement tactically e.g.
 - plan to spell, but be responsive to conditions across the property and perhaps alter the order of spelling
 - be ready to increase stock numbers during improved summers;
 this might include having cash reserves ready for buying stock
- Be responsive to the feed on offer
- Use adaptive management its proactive not reactive
- Monitor, learn and adapt
- Make sensible use of the forecasting tools
- Destock more aggressively than restock e.g. after drought, give a summer with no to little increase over drought numbers to allow the pasture to respond

Decisions for 2011/12 wet season

- Taken in isolation, the current SOI and promise of a weak La Nina may not be too exciting – but coupled with high carry over pasture yields and good soil moisture – the prospect of a good season is high
- How to do it?
- Every business is different, but today we have seen one example of a property using the guides, tools and systems that available
- We hope this will stimulate your own planning over the 2011/12 wet season, and beyond