

Application of updated Animal Equivalent (AE) approach

Col Paton, Ian McLean & Stu McLennan

final report

Project code:	B.GBP.0036
Prepared by:	Stuart McLennan 1, Ian McLean 2 and Col Paton 3 1 Department of Agriculture & Fisheries Queensland, Brisbane; 2 Bush AgriBusiness, Toowoomba; 3 EcoRich Grazing, Goombungee
Date published:	January 2020

PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 1961 NORTH SYDNEY NSW 2059

Re-defining the animal unit equivalence (AE) for grazing ruminants and its application for determining forage intake, with particular relevance to the northern Australian grazing industries

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

AE Report to MLA; Stu McLennan, Ian McLean and Col Paton

- The report contains:
- Literature review of AEs
- Explanation of modified Australian feeding standards equations to suit tropical pastures
- Definitions AE, how to calculate, etc.
- Explanation of Intake Constants & how derived
- Application of AE Approach

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

Presentation overview

- 1. Adult Equivalent (AE) system
- 2. Issues with past approach
- 3. Improved AE approach
- 4. Levels of application
- 5. Updating EDGE material

A way of **comparing** animals of different weights, classes and species, for many purposes including predicting feed consumption.

- Describing the grazing pressure imposed on pastures by foraging animals
- Forage budgeting and paddock carrying capacity assessments
- Economic comparisons across enterprises, properties and businesses
- Property valuations

Consequences of **underestimating** feed consumption for different classes of animals:

- Overgrazed paddocks
- Poor reproduction rates
- Animals not meeting performance targets
- Poor business performance; higher carrying capacity expectations than can be sustained

The evolution of the AE

Another step...

@Ramireztoons

www.investors.com/cartoons

BUSH AGRIBUSINESS

Evolution of the AE system

	Previous approach	New approach
AE	450kg	450kg
Rating	(Liveweight of animal in question) ^{0.75}	ME requirement of animal in question
Formula	Liveweight of AE (450 kg) ^{0.75}	ME requirement of AE
Intake constant	10kg DM/AE/day	8kg DM/AE/day (7.5, 8.5)
Animal intake	AE rating x intake constant	AE rating x intake constant

Issues with previous approach for forage budgets & LTCCs

1. 10 kg DM/AE/day intake

An overestimate at maintenance – 2.2% of liveweight, weight gain would be expected, but safe

- 2. Intake of animal = AE rating x Intake constant....**overestimates** at low growth rates & **underestimates** at high growth rates
- 3. Did not cater for **walking**

Issues with previous approach for forage budgets & LTCCs

 Australian feeding standards underpredict weight gain of cattle fed tropical forages

6. Approach uses average weight and does not cater for growth.

	Weight change	Weight gain	Average weight	Previous AE rating	New AE rating
Steer	350 to 450kg	100kg	400kg	0.92	1.05
Steer	300 to 500kg	200kg	400kg	0.92	1.44

Tropical Pastures Feeding Experiments

McLennan (published **2013**) did research on intakes of cattle grazing tropical pastures and found:

- 18% overestimation of intakes at same digestibilities & weight gains using Australian Feeding Standards (NRDR 2007) equations
- Also Activity accounts for 15-20% of total energy demand by animals grazing on pasture

AE tables based on relative ME need

2014 McLean & Blakely developed Relative Adult Equivalent tables that:

- Used **relative ME requirements** from the Australian feeding standards (NRDR 2007)
- Catered for growth and walking
- 9.4 kg DM/day default intake
- **BUT** 9.4 kg was an overestimate of intake and didn't work well in forage budgets

Production data review

2020 McLennan et al. report

- McLennan Adjusted Australian Feeding Standards equations – to account for intakes on tropical pastures
- McLean used data from Bray et al. (2015) to compare:
 - intakes from modified equations developed by McLennan with

Teamwork!

AE Approach

Caters growth, reproduction and activity to better reflect relative energy demands under grazing situations

Gives a more accurate intake for cattle on **tropical** pastures

Allows for **consistent calculation** and expression of animal units for different uses and species

Definition of AE

- Energy (ME) requirements of different classes of stock relative to the ME requirement of a standard animal
- The standard animal is:
 - 2.25 YO 450 kg Bos taurus steer with zero weight gain
 - walking 7 km/day and
 - Using the Australian feeding standards (NRDR 2007) the standard animal requires 73 MJ of ME /day
- AE rating = <u>ME requirement of animal in question</u> ME requirement of standard animal

Changes with age in AE rating for steers in the high production regions of Queensland calculated using different methods

Comparing intakes from 8 kg x AE rating with QuikIntake (Bray et al. seasonal data)

Varying between 7.5 & 8.5 kg/d according to regional productivity....

BUSH AGRIBUSINESS

As simple or complex as you want it to be

New AE Approach – 3 Levels

Level	Reference tool		
1 SIMPLE	 LTCC using AE rating x Intake constant (8kg/day) Basic forage budgets > 4mths 	Generic tables (broad production zones, figures based on regional averages)	
2 INTERMEDIATE	 LTCC use more detailed AE tables More accurate forage budgets > 4 months 	Bush Agri tables (cattle of different weights, classes and breeds)	
3 ADVANCED	 Short duration forage budgets < 4 months with weight gains > 0.6 kg/day (e.g. oats) Very specific production targets 	Multi-variate models (e.g. 'QuikIntake' and Bush Agri 'Herd Tool' <u>https://www.bushagri.</u> <u>com.au/ae/</u>)	

BUSH AGRIBUSINESS

Level 1 - Simple

	Generic Animal Equivalent Ratings~							
Class of Animal	High	Moderate	Low $(<110 kg/yr)$					
Fomalos <1	(>150Kg/yl)							
remaies <1	0.77	0.08	0.57					
Females 1-2*	1.1	0.91	0.72					
Females 2-3*	1.74	1.12	0.96					
Females 3-4*	1.61	1.49	1.18					
Females 4+*	1.53	1.28	1.08					
Steers <1	0.8	0.72	0.6					
Steers 1-2	1.31	1.03	0.78					
Steers 2-3	1.6	1.27	1.02					
Steers 3-4	1.52	1.39	1.15					
Bulls	1.55	1.52	1.29					
Intake per AE Kg DM/day	7.5	8	8.5					

~ Accounts for major genotypes by production region

Production zones in Queensland

Level 2 - Intermediate

CROSSBRED CATTLE AE TABLES

Animal Equivalent (AE) Ratings represent energy demand relative to the standard AE animal (450kg Bos taurus steer with zero liveweight gain)

Growing Animals (any period)

Breeding Females (annualised mob average)

Steers and Dry Empty Females

			Average Daily Gain (kg/hd/day)							
		0	0.2	0.4	0.6	0.8	1.0			
	150	0.43	0.53	0.64	0.75	0.86	0.98			
	200	0.49	0.61	0.74	0.86	1.00	1.13			
¥.	250	0.59	0.73	0.87	1.02	1.17	1.32			
eig	300	0.68	0.84	1.00	1.17	1.34	1.51			
e v	350	0.76	0.95	1.13	1.31	1.50	1.69			
Liv	400	0.85	1.05	1.24	1.44	1.64	1.84			
age	450	0.94	1.14	1.35	1.56	1.76	1.97			
ers	500	1.01	1.23	1.44	1.66	1.87	2.09			
Av	550	1.09	1.31	1.53	1.75	1.96	2.18			
	600	1.17	1.39	1.61	1.83	2.05	2.27			
	650	1.24	1.46	1.68	1.90	2.13	2.35			
for bulls	add	11%	7%	5%	3%	1%	0%			

		Weaning %							
		60%	65%	70%	75%	80%	85%	90%	
	350	1.11	1.14	1.17	1.20	1.23	1.26	1.29	
	375	1.16	1.19	1.22	1.25	1.28	1.31	1.34	
Ę.	400	1.20	1.23	1.26	1.29	1.32	1.35	1.38	
ei	425	1.25	1.28	1.31	1.34	1.37	1.40	1.43	
e w	450	1.29	1.32	1.35	1.38	1.41	1.44	1.47	
Liv	475	1.34	1.37	1.40	1.43	1.46	1.49	1.52	
Be	500	1.38	1.41	1.44	1.47	1.50	1.54	1.57	
lers	525	1.43	1.46	1.49	1.52	1.55	1.58	1.61	
A	550	1.47	1.51	1.54	1.57	1.60	1.63	1.66	
	575	1.52	1.55	1.58	1.61	1.64	1.67	1.70	
	600	1.57	1.60	1.63	1.66	1.69	1.72	1.75	

Includes calf to weaning, assumes 12mth calving interval and zero LWG

Breeding Females (monthly individual average)

Includes calf to weaning, assumes 12mth calving interval and zero LWG

		Months from birth								Annual				
		-5	-4	-3	-2	-1	+1	+2	+3	+4	+5	+6	+7	Average
	350	0.77	0.80	0.86	0.97	1.17	1.78	1.85	1.86	1.84	1.79	1.72	0.75	1.34
	375	0.82	0.85	0.91	1.02	1.22	1.82	1.89	1.91	1.89	1.84	1.76	0.79	1.38
표	400	0.86	0.89	0.95	1.06	1.26	1.87	1.94	1.95	1.93	1.88	1.81	0.84	1.43
e:	425	0.91	0.94	1.00	1.11	1.31	1.91	1.98	2.00	1.98	1.93	1.85	0.89	1.47
ē	450	0.95	0.99	1.05	1.16	1.35	1.96	2.03	2.04	2.02	1.97	1.90	0.93	1.52
3	475	1.00	1.03	1.09	1.20	1.40	2.00	2.08	2.09	2.07	2.02	1.94	0.98	1.57
8	500	1.04	1.08	1.14	1.25	1.44	2.05	2.12	2.13	2.11	2.06	1.99	1.02	1.61
ers	525	1.09	1.12	1.18	1.29	1.49	2.09	2.17	2.18	2.16	2.11	2.03	1.07	1.66
- A	550	1.13	1.17	1.23	1.34	1.54	2.14	2.21	2.22	2.20	2.15	2.08	1.11	1.70
	575	1.18	1.21	1.27	1.38	1.58	2.19	2.26	2.27	2.25	2.20	2.13	1.16	1.75
	600	1.23	1.26	1.32	1.43	1.63	2.23	2.31	2.32	2.30	2.25	2.17	1.21	1.80
		2nd trim	nester	3rd	trimeste	er				1st	trimeste	r	2nd trim	
									Lacta	ting				

Level 3 - Advanced

Productivity Region High

2

(Annual steer growth >150kg LW)

Variables	Baseline Data	User Input	Applied
Genotype	Crossbred	Crossbred	Crossbred
Age of first joining (mths)	15	27	27
Maiden Heifer Conception Rate	90%	95%	95%
First Calf Heifer Conception Rate	75%	75%	75%
Mature Breeder Conception Rate	83%	85%	85%
Birth Weight (male & female)	35	30	30
Weaning Age (mths)	6	7	7
Animal Liveweights by sex and age			
Females @Birth	35		30
Females @weaning	201	200	200
Females @12mths	258	240	240
Females @24mths	384	370	370
Females @36mths	471	400	400
Females @48mths	509	450	450
Females @60mths	509		450
Males @Birth	35		30
Steers @weaning	219	210	210
Steers @12mths	279	250	250
Steers @24mths	475	380	380
Steers @36mths	570		570
Steers @48mths	666		666
Bulls @Birth	35		30
Bulls @Weaning	220		220
Bulls @12mths	289		289
Bulls @24mths	501		501
Bulls @36mths	612		612
Bulls @48mths	719	800	800

HERD SUMMARY

Description		Weig	hts	Reproc	AE Poting	
			End			per head
Sex and Age	Class	Start Weight	Weight	Pregnant	Lactating	-
Females <1	Weaner Heifers	200	240			0.71
Females 1-2	Replacement Hefier	240	370	0%		1.00
Females 2-3	Maiden Heifers	370	400	94%	0%	0.97
Females 3-4	First Calf Heifers	400	450	74%	91%	1.61
Females 4+	Mature Breeders	450	450	84%	78%	1.40
Steers <1	Weaner Steers	210	250			0.69
Steers 1-2	Young Steers	250	380			0.99
Steers 2-3	Grown Steers	380	570			1.52
Steers 3+	Bullocks	570	666			1.52
Bulls <1	Weaner Bulls	220	289			0.90
Bulls 1-2	Young Bulls	289	501			1.44
Bulls 2-3	Grown Bulls	501	612			1.57
Bulls 3-4	Grown Bulls	612	800			2.10
Bulls 4+	Grown Bulls	800	800			1.69
						#DIV/0!

README

Herd Data

Female Growth Path

Steer Growth Path

Female AE AE Ratings

Steer ... (+)

A National System

- Aust feeding standards AE rating x Intake constant (e.g. 8 kg/AE/d)
- Allows national comparisons
- Caters for sheep and goats
- Roos (Lester Pahl data)

- Description and definition of AE
- Simple AE tables to drop into text of all packages, where required

Primary source - Level 1 simple AE tables

Class of Animal	Generic Animal Equivalent Ratings~					
Cattle	High (>150kg/yr)	Moderate (110-150kg/yr)	Low (<110kg/yr)			
Females <1	0.77	0.68	0.57			
Females 1-2*	1.1	0.91	0.72			
Females 2-3*	1.74	1.12	0.96			
Females 3-4*	1.61	1.49	1.18			
Females 4+*	1.53	1.28	1.08			
Steers <1	0.8	0.72	0.6			
Steers 1-2	1.31	1.03	0.78			
Steers 2-3	1.6	1.27	1.02			
Steers 3-4	1.52	1.39	1.15			
Bulls	1.55	1.52	1.29			
Intake per AE Kg DM/day	7.5	8	8.5			

Class of Animal	Generic Animal Equivalent Rating						
Chaora	Dorpers	Meri	inos				
Sneep		Sml-Med	Med-Lge				
Ewe							
Wether							
Hogget							
Lamb							
Goats	Large	Small					
Nanny							
Billy							
Kid							
Horses	1.5	0.9					
Donkeys							
Camels							
Roos	0.066	6 (25kg Avg w	eight)				

~ Accounts for major genotypes by production region

Where 1 DSE is a 45 kg wether with no weight gain and the ratio of AE:DSE is 1:8.4

Appendices – Level 2 AE tables

CROSSBRED CATTLE AE TABLES

Animal Equivalent (AE) Ratings represent energy demand relative to the standard AE animal (450kg Bos taurus steer with zero liveweight gain)

Growing Animals (any period)

Steers and Dry Empty Females

			Averag	e Daily G	ain (kg/h	id/day)	
		0	0.2	0.4	0.6	0.8	1.0
	150	0.43	0.53	0.64	0.75	0.86	0.98
	200	0.49	0.61	0.74	0.86	1.00	1.13
표	250	0.59	0.73	0.87	1.02	1.17	1.32
leig	300	0.68	0.84	1.00	1.17	1.34	1.51
e v	350	0.76	0.95	1.13	1.31	1.50	1.69
Li,	400	0.85	1.05	1.24	1.44	1.64	1.84
Be	450	0.94	1.14	1.35	1.56	1.76	1.97
lere	500	1.01	1.23	1.44	1.66	1.87	2.09
A.	550	1.09	1.31	1.53	1.75	1.96	2.18
	600	1.17	1.39	1.61	1.83	2.05	2.27
	650	1.24	1.46	1.68	1.90	2.13	2.35
for bulls	add	11%	7%	5%	3%	1%	0%

Breeding Females (annualised mob average)

Includes calf to weaning, assumes 12mth calving interval and zero LWG

				N	/eaning %	6		
		60%	65%	70%	75%	80%	85%	90%
	350	1.11	1.14	1.17	1.20	1.23	1.26	1.29
	375	1.16	1.19	1.22	1.25	1.28	1.31	1.34
ž.	400	1.20	1.23	1.26	1.29	1.32	1.35	1.38
Liveweig	425	1.25	1.28	1.31	1.34	1.37	1.40	1.43
	450	1.29	1.32	1.35	1.38	1.41	1.44	1.47
	475	1.34	1.37	1.40	1.43	1.46	1.49	1.52
Be	500	1.38	1.41	1.44	1.47	1.50	1.54	1.57
ers	525	1.43	1.46	1.49	1.52	1.55	1.58	1.61
Ą	550	1.47	1.51	1.54	1.57	1.60	1.63	1.66
	575	1.52	1.55	1.58	1.61	1.64	1.67	1.70
	600	1.57	1.60	1.63	1.66	1.69	1.72	1.75

Breeding Females (monthly individual average)

Includes calf to weaning, assumes 12mth calving interval and zero LWG

							Months f	rom birth						Annual
		-5	-4	-3	-2	-1	+1	+2	+3	+4	+5	+6	+7	Average
	350	0.77	0.80	0.86	0.97	1.17	1.78	1.85	1.86	1.84	1.79	1.72	0.75	1.34
	375	0.82	0.85	0.91	1.02	1.22	1.82	1.89	1.91	1.89	1.84	1.76	0.79	1.38
E.	400	0.86	0.89	0.95	1.06	1.26	1.87	1.94	1.95	1.93	1.88	1.81	0.84	1.43
eig	425	0.91	0.94	1.00	1.11	1.31	1.91	1.98	2.00	1.98	1.93	1.85	0.89	1.47
ew	450	0.95	0.99	1.05	1.16	1.35	1.96	2.03	2.04	2.02	1.97	1.90	0.93	1.52
Liv	475	1.00	1.03	1.09	1.20	1.40	2.00	2.08	2.09	2.07	2.02	1.94	0.98	1.57
Be	500	1.04	1.08	1.14	1.25	1.44	2.05	2.12	2.13	2.11	2.06	1.99	1.02	1.61
era	525	1.09	1.12	1.18	1.29	1.49	2.09	2.17	2.18	2.16	2.11	2.03	1.07	1.66
A	550	1.13	1.17	1.23	1.34	1.54	2.14	2.21	2.22	2.20	2.15	2.08	1.11	1.70
	575	1.18	1.21	1.27	1.38	1.58	2.19	2.26	2.27	2.25	2.20	2.13	1.16	1.75
	600	1.23	1.26	1.32	1.43	1.63	2.23	2.31	2.32	2.30	2.25	2.17	1.21	1.80
2nd trimester 3rd trimester							15	t trimeste	er	2nd trim				
						Lacta	ating							

Other updated tables in EDGE Metabolisable Energy requirements tables

Protein requirements tables

Forage budgets

Annual intakes for LTCCs

Forage hudget	Forage Budget with Unpalatable 3Ps Component							
i oluge buuget			Select Production Zone (H. M. or I.)	Modorato				
				Example				
NION	Α		Paddock Area (ha)	1,500				
	В		Start Date	01-May-17				
·	С		End Date	01-Jan-18				
	D	= C - B	Number of Days	245				
			Pasture					
	Е		Start Yield	2,000				
	F		Detachment (%)	15%				
	G	= E x F / 100		300				
	н		Unpalatable species (%)	20%				
	I	= (E - G) x H / 100		340				
	J		Unpalatable 3Ps component (%)	10%				
	κ	= (E - G) x J		170				
	L		Anticipated growth (kg/ha)	100				
				4.460				
	M	= E - G - I + L	Userui Pasture (kg/na)	1,460				
	Ν		Desired residual (kg/ha)	1,000				
	0	= M - (N or K)	Available for grazing (kg/ha)	460				

Forage budget

		Demand	
		Class of Cattle	Steers 1-2
Р		Total Number of head	600
Q		Entry weight	280
R		Exit weight	350
S		Average weight	315.0
Т	Look up AE Tables	AE Rating per animal	1.03
		Daily weight gain (kg)	0.29
U	= P x T	Adult Equivalents	618
V		Dry Matter Intakes (kg/AE/day)	8
W	= V x U x D / A	Demand (kg/ha)	808

Previously

FEED DEMAND

		Class of cattle	Steers
Р		Total number of head	70
Q		Entry weight	340
R		Exit weight	360
S	= Q + R / 2	Average weight	350
Т	Look up AE table	AE rating (add 0.3 for wet cows)	0.83
U	= P x T	Adult Equivalents	58.1
		Dry matter intake (% per AE)	1.8%
v	% DMI / 100 x 450	Dry matter intake (kg/AE/day)	8.1
w	= V x U x D / A	Demand (kg/ha)	809kg/ha

No need to estimate intake % anymore!

Forage budget

	Results	
	How many days will pasture last with	
= (O x A) / (V x U)	current stock numbers?	140
	How many AE's will paddock carry to	
= (O x A) / (V x D)	end date?	352
	Pacture esten as % of Useful Pacture	FF
	Fasure eaten as % of Oserul Fasure	22
= M - W	Residual Useful Pasture (kg/ha)	652

Annual intakes for LTCCs..

Land Type and	and Type and Paddock Carrying Capacity Calculator - ample water points												
FD usually 2,920 kg/	AE/year												
Paddock	Land Type	Land Condition (ABCD)	Tree basal area (m²/ha)	Pasture Growth (kg DM/ha/year)	Utilisation rate (%)	Pasture utilised (kg DM/ha)	Forage demand (kg DM/AE/year)	Land type carrying capacity (ha/AE)	Area of land type (ha)	Number of AEs for land type (AE)	Paddock Long Term Carrying Capacity (AE)	Property Long Term Carrying Capacity (AE)	
Codes				PG	U	PU	FD	LTCC	Area	LT AE			
Formulae						=PG x U	FD	= FD / PU	Area	= Area / LTCC	= Sum LT AE	1016	
Pullyabarraback	Box on grey clay	А	4	2,400	25%	600	2,920	4.87	1200	246.6			
	NL ironbark sodic duplex	А	4	1,850	25%	463	2,920	6.31	400	63.4			
	NL ironbark brown duplex	А	4	2,250	25%	563	2,920	5.19	400	77.1			
	Brigalow gidgee scrub	А	0	2,750	30%	825	2,920	3.54	600	169.5			
											557		
Kickabrickalong	Brigalow gidgee scrub	А	0	2,750	30%	825	2,920	3.54	800	226.0			
	NL ironbark on sodic duplex	А	4	1,850	25%	463	2,920	6.31	500	79.2			
	Box on grey clay	А	4	2,400	25%	600	2,920	4.87	750	154.1			
											459		

Key take home messages / learnings

- 1. The standard animal has been defined as:
 - 2 ¼ year-old, 450 kg Bos taurus steer
 - zero weight change
 - walking 7 km/day.
- The Australian feeding standards (NRDR) do not predict the intakes of ruminants grazing tropical forages well
- Either the modified or unmodified NRDR equations can be used to estimate the AE rating

Key take home messages / learnings

- 4. The intake of cattle can be estimated by multiplying the AE rating by an intake constant that varies between 7.5 and 8.5 kg DM/AE/day, depending on the productivity of the grazing enterprise
- 5. The application of the AE system can be as simple or complex as the operator wishes.

Questions?

How does this approach account for animals grazing a tropical pasture?

- Energy requirements of an AE using NRDR 2007 equations is **73 MJ**
- Energy requirements of an AE using modified equations for tropical pastures in Northern Australia is 64 MJ
- Providing the energy requirements of the animal(s) in question and the standard animal are calculated using same equations, the AE rating is effectively the same

Why is Metabolisable Energy (ME) demand used to derive AE's and not intake?

- ME DEMAND is a function of animal only variables (breed, sex, weight, production etc.)
- ...whereas INTAKE is influenced by environmental factors (primarily diet quality).
- Using ME means that a 300kg Hereford steer gaining 0.6kg/day is 1.25AE whether he is at Armidale, Amby or Alice Springs, whereas his intake may be different across those three locations.

Why is the intake constant figure highest for low production areas?

The poorer the quality of diet (less nutrients), the MORE an animal needs to eat to satisfy its production requirements

BUT...

In practice, they will eat LESS because it is less palatable and digestible (doesn't taste very good)

Why is the intake constant figure highest for low production areas?

The **poorer the quality of diet** (less nutrients), **the MORE an animal needs** to eat to satisfy its production requirements

Example

How much would a typical <u>low production</u> <u>zone</u> 3yo female (avg weight of just under 400kg & repro rate < 60%) need to eat per day to meet average performance benchmarks for the region?

- AE rating = 1.18
- Intake constant = 8.5kg/day
- 1.18 x 8.5 = 10 kg/day

How much would a typical <u>high production</u> <u>zone</u> 3yo female (avg weight 490kg & repro rate > 70%) need to eat per day to meet average performance benchmarks for the region?

- AE rating = 1.61
- Intake constant= 7.5kg/day
- 1.61 x 7.5 = 12.1 kg/day

Why should we use 55% DMD as a standard when we know it goes to much less in the dry season of northern Australia?

- Whilst diet quality does vary across seasons and regions, 55% is a representative figure for northern Australia.
- Change in diet quality does not have a big influence on the AE rating of an animal (i.e. it's ME demand relative to the standard animal, if the same DMD is used for both calculations).
- The regional differences in diet quality are also reflected in the adjusted intake constants based on productivity.

How does the simple model account for the land type variability within a region?

- The simple model does not work on a land type basis; it works at a regional level first but if you think growing cattle on your property would have a different weight gain to the regional weight gains quoted in each column
- e.g. between 110 kg/year and 150 kg/year using an intake constant of 8 kg/AE/day, you can choose another regional intake constant to suit.
- It is not meant to work at a land type level for a property. There will be some properties, say around Alpha, that have higher fertility soils than the Burdekin regional average and they might choose to jump from an intake constant of 8 kg to the high production intake constant of 7.5 kg, but they must use the AE ratings for animals from that same column