\$ENSIBLE \$UPPLEMENTATION

@QIdAgriculture
@futurebeef
#eatqld
#beefextension

Choosing and managing supplements

Department of Agriculture and Fisheries

Webinar Series Outline

<u>1 September – Cattle nutrition principles</u>

8 September – Herd management & nutrition

<u> Today – Choosing and managing supplements</u>

- Supplement types and their use
- Reading supplement labels
- Nutritional requirements and targets
- Assessing and choosing supplements

Upcoming free workshops

Central Queensland

- Mon 20th September Gin Gin
- Tues 21st September Miriam Vale
- Wed 22nd September Gracemere
- Tues 26th October Biloela
- Wed 27th October Taroom
- Fri 29th October Alpha

Southern Queensland

- Tues 23rd November Gympie
- Wed 24th November Proston
- Thurs 25th November Biggenden

Non protein nitrogen (NPN) supplements

- Urea and GranAm
- Supply nitrogen to the rumen microbes
- Increased microbial protein = increased protein intake
- Nitrogen % x 6.25 = Equivalent crude protein %

Urea - 46% nitrogen x 6.25 = 287% Equivalent crude protein

Urea % x 2.87 = Equivalent crude protein %

10% Urea x 2.87 = 28.7% Equivalent crude protein

Non protein nitrogen (NPN) supplements

GranAm - 20.2% nitrogen x 6.25 = 126% Equivalent crude protein

GranAm % x 1.26 = Equivalent crude protein %

8% GranAm x 1.26 = 10% Equivalent crude protein

Protein and energy supplements

Protein meals supply protein and energy

Product	Crude	Metabolisable
	protein	energy
	(%)	(MJ ME/kg)
Canola meal	35.0	9.0
Soybean meal	47.0	12.0
Whole cottonseed	21.0	13.0
Sorghum	9.6	10.4

Protein meals

- Most of the protein is broken down in the rumen to produce microbial protein (Rumen degradable protein RDP)
- Some protein passes through rumen and is digested in the intestine (Undegraded protein UDP)
- UDP is only important for early weaners and high growth animals

Energy supplements

Supply energy and small amounts of protein

Product	Crude protein (%)	Metabolisable energy (MJ ME/kg)
Sorghum	9.6	10.4
Wheat	12.3	12.0
Molasses	4.2	8.7
Whole cottonseed	21.0	13.0

	Reading labels				
Total crude protein	86%	Fluorine (maximum)	0.1%	Protein from	
Crude protein	Nil	Sulphur	1.4%	natural/true	
Equivalent crude protein	86% 🚽	Magnesium	3.5%	protein	
Urea	30%	Copper	300 mg/kg	sources	
Crude fat	0%	Cobalt	30 mg/kg		
Crude fibre	0%	lodine	30 mg/kg	Protein from	
Salt	30%	Zinc	500 mg/kg	urea &	
Calcium	7%	Selenium	2.5 mg/kg	GranAm	
Phosphorus (minimum)	3.6%			GIANAIII	

<u>Note</u> No metabolisable energy (ME)

Metabolisable energy

4.0 MJ ME/kg

Check units used in labels

Total crude protein	65%	Magnesium	3.5%
Crude protein	22%	Copper	250 mg/kg
Equivalent crude protein	43%	Cobalt	30 mg/kg
Urea	15%	lodine	30 mg/kg
Metabolisable energy	3.5 MJ/kg	Zinc	500 mg/kg
Salt	20%	Selenium	2.5 mg/kg
Calcium	4%	Vitamin A	45000 IU/kg
Phosphorus (minimum)	1500 mg/kg	Vitamin D	4500 IU/kg
Sulphur	2.0%	Vitamin E	145 mg/kg

Labels have a mix of units

• %s

• g/kg

• MJ/kg

• mg/kg

• IU/kg

<u>1500 mg P/kg is</u>

≻ 1.5 g/kg

➢ 0.15%

Check units used in labels

Total crude protein	65%	Magnesium	3.5%
Crude protein	22%	Copper	250 mg/kg
Equivalent crude protein	43%	Cobalt	30 mg/kg
Urea	15%	lodine	30 mg/kg
Metabolisable energy	3.5 MJ/kg	Zinc	500 mg/kg
Salt	20%	Selenium	2.5 mg/kg
Calcium	4%	Vitamin A	45000 IU/kg
Phosphorus (minimum)	1500 mg/kg	Vitamin D	4500 IU/kg
Sulphur	2.0%	Vitamin E	145 mg/kg

Labels have a mix of units

• %s

• g/kg

• MJ/kg

• mg/kg

• IU/kg

<u>1500 mg P/kg is</u>

≻ 1.5 g/kg

➢ 0.15%

Intake must be considered with analysis

Protein

400 g/day of product with 40% protein supplies 160 g protein/day

1,000 g/day of product with 16% protein supplies 160 g protein/day

<u>Phosphorus</u>

67 g/day of product with 15% phosphorus supplies 10 g phosphorus/day

200 g/day of product with 5% phosphorus supplies 10 g phosphorus/day

<u>Energy</u>

2 kg/day of product with 12 MJ ME/kg supplies 24 MJ ME/day

4.8 kg/day of product with 5 MJ ME/kg supplies 24 MJ ME/day

Critical to know:

- Specific gravity (kg/L)
- Is analysis on <u>Dry Matter or As Fed</u> basis

Specific gravity (kg/L)

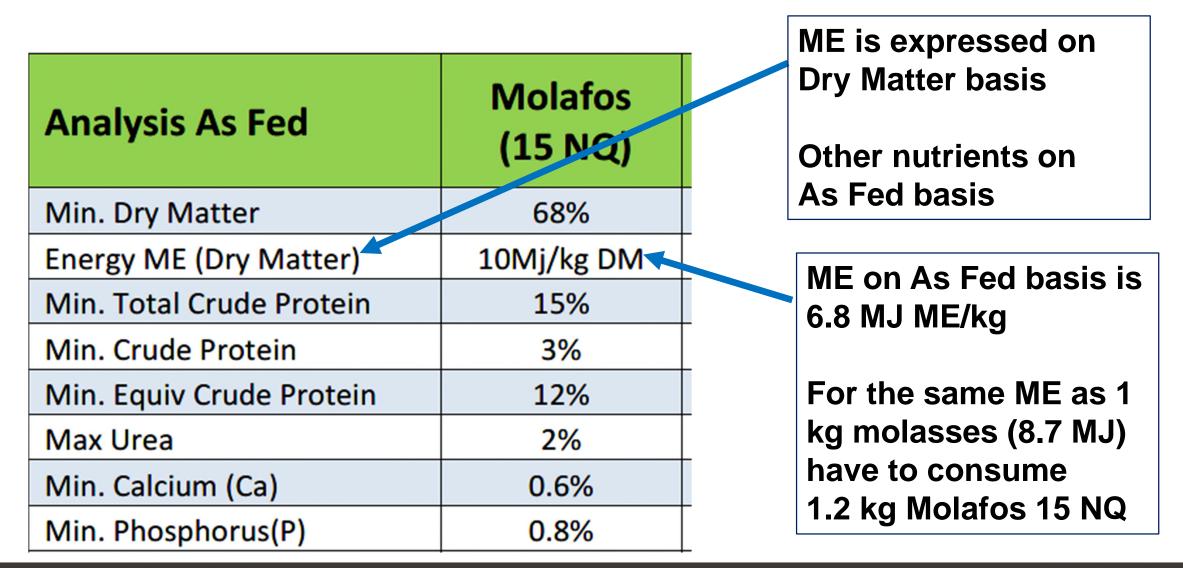
 Needed to convert volume fed (L) to weight fed (kg) for nutrient intake calculations

Water	1.00 kg/L
Molasses	1.35 kg/L
M8U	1.46 kg/L
Dunder	1.10 kg/L
Liquid supplement	1.30 kg/L

Analysis on Dry Matter versus As Fed basis

	Dry matter %	Metabolisable energy (ME)		
		Dry matter basis	As fed basis	
Molasses (1.35 kg/L)	76%	11.0 MJ ME/kg	8.7 MJ ME/kg	
Dunder (1.1 kg/L)	28.7%	10.4 MJ ME/kg	3.0 MJ ME/kg	

1 kg Molasses is 740 ml and supplies 8.7 MJ ME


1 kg Dunder is 909 ml and supplies 3.0 MJ ME

TYPICAL ANALYSIS² Ingredients SuplaFlo® 10NP Units Dry matter As fed **Dry matter** % 100 28.7 Protein 11.2 3.2 % Fat 0.6 % 2.0 Ash % 26.9 7.7 ME³ MJ/kg 10.4 3.0 Calcium g/kg 20 5.6 Phosphorus (P) g/kg 0.4 1.2 Magnesium (Mg) g/kg 12.6 3.6 Sulphur (S) 3.7 g/kg 13 Potassium (K) g/kg 86 25 Sodium (Na) 1.1 g/kg 3.8 Chloride (CI) g/kg 59 17 Cobalt (Co) 0.6 mg/kg 2.0 Copper (Cu) mg/kg 5.0 1.5 lodine (I) mg/kg 2.0 0.6 Iron (Fe) mg/kg 177 51 Manganese (Mn) mg/kg 119 34 Selenium (Se) mg/kg 0.2 0.1 Zinc (Zn) mg/kg 18 5

Analysis on both Dry matter and As fed basis

Analysis as fed		Most nutrients on As Fed basis
Dry matter	60%	
Total crude protein	18%	Metabolisable energy
Crude protein	4%	on Dry matter basis
Equivalent crude protein	14%	
Urea	5%	
Metabolisable energy (Dry matter)	10 MJ/kg DM	
Calcium	0.8%	
Phosphorus	1.0%	ME on As Fed basis is 6.0 MJ ME/kg
		For the same ME as 1 kg molasses (8.7 MJ) have to consume 1.45 kg o product

Nutrition requirements and targets

- First requirement is for cattle to be able to consume potential pasture intake
- With paddock <u>supplementation</u>, cannot supply total protein and energy requirements because of cost and logistics

Dry season protein supplementation

Growing cattle75-90 g crude protein/dayBreeders150-170 g crude protein/day

Nutrition requirements and targets

Dry season energy supplementation

- Growing cattle 8 15 MJ metabolisable energy/day
- Breeders 16 20 MJ metabolisable energy/day

Nutrition requirements and targets

Weaners under 160 kg

Require a palatable high energy and true protein supplement

Weaner meals 700-1,000 g/day

Protein meals 500-700 g/day

Fortified molasses 1,000 g/day

Supplying 6-12 MJ ME/day

Supplement selection

- Identify nutrients and target intakes required e.g. protein, phosphorus, energy
- Assess supplements on basis of cost of supplying nutrients required
- Cost per unit of protein, phosphorus or energy
- Palatability
- Consider practicalities and infrastructure

Which protein supplement?

- Compare supplements on cost per unit of protein
- FEEDCALC & RationCalc tools

Intakes and costs to supply 150 g protein/day

Supplement	Cost	Protein	Urea	Intake	Cost
	(\$/t)	(%)	(%)	(g/hd/day)	(\$/hd/mth)
30% urea block	1,280	86	30	174	6.70
Roller drum mix	180	21.6	6.4	694	3.75
10% urea lick	900	57	10	263	7.10
Liquid product	250	15	3.3	1,000	7.50
30% urea lick	1,000	99	30	152	4.56

Which protein supplement?

- Higher urea products are more economical
- Will it supply enough phosphorus?
- Roller drums and dunder are often good value in near coastal areas
- Commercial liquid supplements offer convenience but intake control can be a problem under very dry conditions
- Most protein supplements supply little or no energy
 e.g. 2-5 MJ ME/day
 Wet cow news 80-90 MJ/day

Lick composition

- GranAm supplies sulphur and protein and limits intake
- Salt can be an attractant or limiter depending on country and water
- Protein meal e.g. 10-30% can be used as an attractant
- Aim to feed as little attractant as possible to reduce costs
- Phosphorus component of dry season licks is based on lick intake and desired P intake. Usually 10-20% MDCP, DCP or MCP on deficient country.

Energy Supplements

- Energy can only be provided by high intakes of molasses, whole cotton seed, protein meals or grain
- Most commercial liquid supplements are low in energy i.e.
 2-6 MJ ME/kg v Molasses 8.7 MJ ME/kg (As fed)

Which energy supplement?

- Compare supplements on cost of supplying target energy intake
- Is analysis "As fed" or "Dry matter" basis?
- Know the density (kg/L) of liquid supplements

Intakes and costs to supply 17 MJ ME/day

Supplement	Cost (\$/t)	ME (MJ/kg)	Intake (kg/hd/day)	Cost (\$/hd/mth)
Liquid product	250	3.8	4.7	35.25
M8U	280	8.1	2.1	17.64
Whole cottonseed	500	13.0	1.3	31.68

Managing supplements

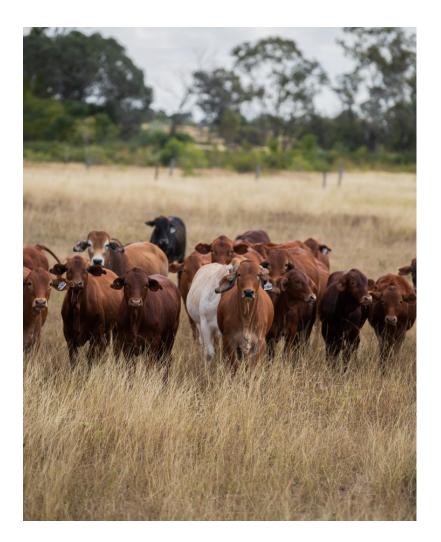
- Experiment with supplement composition to find out what works best
- Good intake records enable nutrient intakes (protein, ME & P) and costs to be monitored
- Urea and phosphorus supplements work by increasing feed intake therefore grazing pressure increases 10-30%
- With energy supplements, severe grazing pressure can be applied

Supplementation v Substitution

- Cattle are grazers, do not replace grass with purchased feed
- Danger signs
 - Regular long periods of energy feeding
 - Regular hay feeding

Rising feeder prices push grainfed trading budget loss to record levels

by Jon Condon, 08 November 2018



- Understand the composition of supplements
- Identify what your cattle and target supplement intakes
- Compare supplements on the basis of supplying target nutrient intakes e.g. protein, phosphorus
- Targeted supplementation to address deficiencies not replacing grass with purchased feed

Extra support

- FutureBeef website
- DAF extension officer, phone: 13 25 23
- Workshops in CQ and SQ FutureBeef event calendar

