Pathways towards carbon neutral grazing systems

Richard Eckard

Primary Industries Climate Challenges Centre

International Policy Drivers COP21 Paris Agreement

- Reach global peaking GHG emissions as soon as possible
 - Achieve a climate neutral world by 2050
 - Assumed as net zero GHG, but not required
 - Methane may not need to be zero?
 - COP26
 - Increased 2030 ambition
 - Proposed 30% reduction in methane

Carbon Neutral Agriculture Supply chain responses to Paris Agreement

- Fonterra
 - Climate-neutral growth to 2030 for pre-farmgate emissions from a 2015 base year
- Unilever
 - Reducing the GHG impact of their products by 50% by 2030, compared to baseline of 2010
- Mondelez
 - Reduce absolute GHG from manufacturing 15%
 - 100% renewable energy
- Nestle
 - Zero environmental impact in our operations
- JBS
 - Net-zero GHG by 2040 and zero deforestation across its global supply chain by 2035
- Heineken
 - Carbon neutral barley-malt supply chain
- Rabobank
 - Carbon neutral supply chains
- NAB
 - Net zero financed emissions by 2050
 - NAB + Rabo = >50% of agri debt market

- Mars
 - Reduce GHG across our value chain 27% by 2025 and 67% by 2050 (from 2015 levels)
- Kellogg Company
 - 65% reduction by 2050
 - 100% renewable energy
- Pfizer
 - 60 to 80% by 2050
- Wilmar international
 - 89.72% less GHG from 2013 to 2020
 - 100% renewable energy
- Olam
 - Reduce GHGs by 50% by 2030 both in our own operations and in our supply chain
 - By 2050, we aspire to be carbon positive in operations, requiring a 5% emissions reduction per year from 2031 2050

- Of the 100 largest economies 69 are companies and 31 are countries
- Government policy may now be less influential than market forces

Industry and market drivers Livestock Industry Responses

- Australian Red Meat Industry (RMAC 2030 strategy)
 - Australian red-meat can be carbon neutral by 2030 (CN30)
- Mato Grosso do Sul (MS), Brazil
 - "MS carbon neutral" initiative
 - Carbon neutral Brazilian Beef
- New Zealand

- Climate Change Response (Zero Carbon) Amendment Act 2019
 - Net zero by 2050
- California SB 32
 - 40 % less methane by 2030 over 1990
- Global Methane Pledge at COP26
 - 30% less methane by 2030 by 105 countries

Industry and market drivers Carbon Neutral Agriculture

- Livestock
 - Arcadian Organic & Natural's Meat Co's
 - Flinders + Co Meats
 - NAPCO
- Wine
 - Ross Hill
 - Tulloch
 - Cullen

International Policy Drivers Border Adjustment Tariffs

- USA: President Joe Biden
 - "Failing to curb emissions means America will tax your exports"
 - "to ensure his climate policies do not place US workers and companies at an unfair disadvantage" – Financial Times 26 April 2021
- The EU's Carbon Border Adjustment Mechanism (CBAM)
 - "The European Parliament... approval to... start taxing imports from countries without a carbon price... by 2023" Financial Times 11 March 2020
- Around 70% of Australian Agricultural product is exported
 - Australian ranked last on the Climate Change Performance Index (CCPI)
- Our only choice is:
 - Does the carbon tax get paid outside Australia, or can we keep the revenue within our agricultural sector?

Carbon Farming, Carbon Neutral

Carbon Farming

- Management principles that minimise GHGe, maximise carbon sequestration in the landscape, while improving the productivity and resilience of agricultural systems
 - Aus definition
- Carbon Neutral (net zero)
 - Management that minimises GHGe, and offsets the balance of emissions through sequestration of an equivalent amount of carbon dioxide in soils or vegetation
 - On an year-by-year basis

The Carbon Cycle in Agriculture

piccc

Carbon Neutral vs Carbon Account

- Carbon account/audit (CA)
 - Net Emissions (NE = t CO₂e/ business unit)
 - All GHG from boundary of the farm enterprise
 - All GHG upstream
 - All Soil and tree sinks
- Carbon footprint (CF)
 - Emissions intensity (EI = t CO₂e/t product)
 - Same method as CA

- Demonstrate carbon neutrality
 - Access to premium markets e.g. carbon neutral wool
 - Future compliance, meeting supply chain targets, trade barriers
- Trading carbon credits diversified income
 - Regulatory market
 - Sell ACCUs to government on ERF/CSF
 - Government retires the ACCU -> Sector could technically still claim this
 - Voluntary markets
 - e.g. Gold Standard, Verra, ERF secondary market
 - Selling to private entity esp. outside of Australia
 - Leaves the sector / country -> sector/country cannot use this as their offset

Marketing carbon neutral or carbon credits

- Fundamental difference between
 - Carbon sequestration offset = finite accumulating stock
 - Will need these stocks as an offset against future neutrality
 - Emissions avoidance offset = flux
 - Could sell these up to the day neutrality is required
- Future pricing
 - Soil carbon less secure
 - Emissions avoidance no permanence concerns
 - Value-added credits e.g. indigenous land, biodiversity etc.

Why Carbon Neutral? *Typical Farm GHG profiles*

What can be done on farm now? *Methane*

Primary Industries Climate Challenges Centre

Methane from animal production *Rumen digestion*

- Ruminants evolved 4 stomachs about 50M years ago
 - We aim to change this in 30 years
 - Adaptation to mitigants is a challenge
- Rumen = Microbial fermentation
 - 40-60% bacteria & protozoa
 - 10¹¹ & 10⁶ cells/ml over 200 species
 - 5-10% fungi
 - 10⁶ zoospores/ml
 - 3% Archaea (methanogens)
 - 10⁸ cells/ml

- Largest inefficiency in animal production
 - Methane energy content 55.22 MJ/kg
 - 6 to 10% of GEI lost as CH_4

Animal Class	Methane (kg/year)	Methane (g/day)	MJ lost (CH ₄ hd/day)	Potential km driven in 6-cylinder car
Mature ewe	6 – 10	16 – 27	1 - 1.5	54 – 90
Wether	7 – 11	19 – 30	1 – 2	63 – 100
Beef steer	40 – 60	110 – 164	6 – 9	360 – 540
Breeder cow	50 – 90	140 - 250	8 – 14	450 - 800
Dairy cow	90 – 146	250 - 450	14 – 25	800 - 1480

Enteric Methane Abatement Animal Productivity

• Reducing unproductive animal numbers

- Animal management, health, nutrition
- Reproduction, fertility, weaning %
- Animal Breeding
 - Residual methane production
 - Low heritability & slow gains (<1% /year)
 - Low weight in multi-trait index
 - Could be breeding for rumen passage rate
 - Feed Conversion Efficiency
 - Moderate heritability
 - Higher weight in multi-trait index

Richardson et al. 2021; Pickering et al. (2015); Pinares-Patiño et al. (2013); Cabezas-Garcia et al. (2017); J. Lassen (Viking Genetics); Beauchemin, Ungerfeld, Eckard and Wang (2020); Barwick et al. (2019)

Enteric Methane Abatement *Forage quality*

- Forage digestibility
 - Better pastures & grazing management
 - Finishing animals faster
 - Lower rumen retention time
- Plant Breeding
 - More balanced energy to protein ratio
 - Secondary compounds
 - Tannin, oils

Mitchell Grass

Enteric Methane Abatement Dietary supplements

- Oils (~20%)
 - 1% added fat = 3.5% less CH₄
- Tannins (10-15%)
 - e.g. Forage legumes
- Tannin + Oil (~20%)
 e.g. Grape marc
- Essential Oils
 - MOOTRAL (20-30%)
 - Garlic and citrus extract
 - AGOLIN (10-20%)

Enteric Methane Abatement Secondary plant compounds

- Legumes and novel forages
 - Tropical legumes
 - e.g. Leucaena, Desmanthus, Desmodium
 - Temperate legumes
 - e.g. Lotus, Sulla, Crown Vetch

Crown vetch

Li et al. (2014); Charmley et al. (2015); Doran-Browne et al. (2015); Eckard et al. (2010)

Enteric Methane Abatement Leucaena example

Harrison, McSweeny, Tomkins, Eckard 2015

Enteric Methane Abatement Irrigated Leucaena example

Pasture	Area (ha)		Steers	GHG	GHG/LW	Mths	ADG
	Grass	Legume	(hd)	(t CO2e)	(t CO2e/t LW)		(kg/hd/d)
Rhodes	9556	0	600	2739	8.4	36	0.36
Irrigated							
Leucaena	9170	386	1250	2677	3.9	18	1.03

Radrizzani et al. 2010; Conrad 2014; Shelton and Dalzell 2007; Taylor et al. 2016

Enteric Methane Abatement Zero Emissions Livestock Production (ZELP)

https://www.zelp.co/

- Post emission catalytic technology for real-time oxidation of up to 53% enteric methane emission
- 4 years solar cell and a thermo-electric generator to allow it to re-charge automatically

Enteric Methane Abatement Coming Soon!

- Bovaer[®] (3-nitrooxypropanol 3-NOP)
 - 20-40% (>70%)
 - Registration in Brazil, Chile, EU
- Seaweeds (e.g. Asparagopsis)
 - Red: >80% or 5.3 g CH_4 /kg DMI over 72 days
 - Due diligence issues still required
- Vaccine (20%?)
- Early life programming

Muizelaar et al. (2021); Machado et al. (2014); Kinley et al. (2016), Li et al. (2018), Tomkins *et al.* (2015) Wedlock et al. (2013); Yánez-Ruiz et al. (2015); Eckard and Clark (2018); Meale *et al.* (2021)

Ungerfeld 2018, Roque *et al.* 2019; Van Nevel and Demeyer 1996; Hristov et al. 2015; Dijkstra et al. 2018; Vyas et al. 2018; Romero-Perez et al. 2014; McGinn et al. 2019; Thiel et al. 2019a & b

Enteric Methane Abatement *Rumen manipulation*

- Vaccine (20%?)
 - Antibodies in saliva
 - Suited to more extensive grazing
- Early life programming
 - Programming the rumen early in the animal's life
 - Using 3-NOP
 - Early evidence, persistence?
 - Most suited to extensive grazing

Summary of options for reducing Enteric Methane

Do Now

- Management (10%)
 - Efficiency, health, fertility
- Legumes (10-15%)
 - Leucaena, Lucerne, Vetch, Lotus
- Supplements (10-20%)
 - Oils, tannins e.g. grape marc
- Breeding (1%/yr)
 - Plants
 - Animals
- Wearable device (ZELP 50%?)

Do in 5-10 years

- Vaccine (20%)
- Inhibitors (>80%)
 - Seaweed
 - 3-NOP
- Early life programming

Charmley *et al.* 2016; Grainger et al. (2009); Moate et al. (2011; 2014; 2016); Williams et al. (2019); Van Nevel and Demeyer (1996); Machado et al. (2014); Li et al. (2018); Eckard and Clark (2018); Li et al. (2018), Meale *et al.* (2021)

What can be done on farm now? *Nitrous oxide*

Primary Industries Climate Challenges Centre

Options for reducing nitrous oxide loss

Input management

- N fertiliser
- Legumes
- Animals

Soil management

- More efficient use of soil N
- Less saturation & compaction
- Less soil disturbance
- Irrigation management

De Klein & Eckard 2008; Eckard R.J. et al. (2006); Christie et al. (2018); Smith et al. (2018)

Nitrous Oxide Abatement Livestock Urine

- Ruminants excrete 75 to 95% of N intake
 - Urine: Dung
 - 50:50 when N limited
 - Increasing in urine above sufficiency
 - Urine N mainly urea
 - <30% utilised for production but >60% lost
 - N content of urine
 - Dairy: 800 1300 kg N/ha in a patch
 - Beef: 200 400 kg N/ha in a patch

Whitehead 1995; Eckard et al 2007; de Klein & Eckard 2008

Nitrous Oxide Abatement Livestock Urine

• Tannin (some legumes)

- Redirect surplus N from urine into faeces
 - Ok if CP is high
 - Could induce N deficiency if CP is low
- Tannin-protein complex
 - Digested in abomasum
 - Excreted in less volatile form than urine
 - More recalcitrant in the soil

Crown vetch

Grainger, Eckard et al. 2009

Nitrous Oxide Abatement Biological Nitrification Inhibitors

- Brachiaria species
 - Root exudate
 - Brachialactone

- Blocks
 - Ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase enzymatic pathways in *Nitrosomonas*

What can be done on farm now? *Soil Carbon*

Primary Industries Climate Challenges Centre

Loss of Soil Organic Matter

Sequestration - Soil Carbon What determines SOC content?

Soil organic carbon $= f \begin{bmatrix} \text{Inputs of} & \text{Losses of} \\ \text{organic carbon} & \text{organic carbon} \end{bmatrix}$

Inputs

- **Plant** Growth
- Imported C

High rainfall = high Drought = lower

Outputs

Microbial turnover

High rainfall = high

Drought = **still high**

In Australia rainfall has a dominant impact Perhaps think of SOC in decadal time-steps

Source: Jeff Baldock

Sequestration - Soil Carbon Soil Organic Matter - Benefits

- Building SOM is good just good practice
 - Healthy, more productive and resilient soils
 - Adaptation to climate change
 - Payment is there already?

Biological roles	Physical roles	Chemical roles
- Reservoir of nutrients	- Water retention	- Cation exchange
- Biochemical energy	- Structural stability	- pH buffering
- Increased resilience	- Thermal properties	- Complex cations
- Biodiversity	- Erosion	

Sequestration - Soil Carbon Soil organic carbon – challenges

10–25 years for the SOC changes to become measurable

Petersen et al. (2005)

Sequestration - Soil Carbon Rainfall a key driver

- Growing-season rainfall explains most of the variation in SOM
- Particularly in lower rainfall regions

ERF Offset method: *Estimating Sequestration of Carbon in Soil Using Default Values, Methodology Determination 2015*

	Categories of sequestration potential (t C/ha/yr)					
Project management activity	Marginal benefit	Some benefit	More benefit			
Sustainable intensification	0.03	0.16	0.45			
Stubble retention	0.02	0.08	0.20			
Conversion to pasture	0.06	0.12	0.23			

Potential for soil organic carbon sequestration by pasture land use and rainfall zone in Australia

Rainfall (mm)	t C/ha/y	
300 – 600	0.41	
600 – 900	0.68	
900 – 1200	0.90	
1200 – 1500	1.17	
>1500	1.23	

AUSTRALIA'S LONG-TERM EMISSIONS REDUCTION PLAN

Cropping to long-term pasture (t C/ha/yr):

- 0.34 to 0.97 (Badgery et al., 2014)
- 0.26 to 0.70 (Chan et al., 2011) (Long term data)
- 0.30 to 0.90 (Robertson & Nash, 2013)
- 0.50 to 0.84 (USDA 2014)

Sequestration - Soil Carbon A new view

• Spatial

- Focus on areas with potential
 - Granite ridges vs clay soils
- Temporal
 - Managing rainfall variability
 - We build more SOM in La Niña years than El Niño
 - Maximise SOM in good years
 - Minimise SOM loss in bad years
- National and Industry good
 - Agriculture will need its own offsets to be carbon neutral
 - Should we be selling our offsets outside of the land sector?

piccc.org.au

www.piccc.org.au/education/carbonneutraltraining

THE UNIVERSITY OF MELBOURNE

Primary Industries Climate Challenges Centre

© Copyright The University of Melbourne 2008

On-farm Carbon Accounting

Primary Industries Climate Challenges Centre

Carbon Accounting

- Greenhouse Gas emissions
 - Sheep & Beef (SB-GAF)
 - Cropping (G-GAF)
 - Dairy (ADCC)
 - Feedlot, Cotton, Sugar, Hort etc

Cron	Wheat	Barley	Dulsas	Oilseads		Summary	LCO2elfer
Ontents	t CO-s/farm	1 CO. siferen	1 CO-elfarra	t CO. offerm	total (CO2+/farm	Summary	reozeian
	reogenaria	reogenation	rcoge/arm	reogenitu	totart CO2e/arm		
Scope 1 Emissions (on-farm)				I	7.0	60	
CO ₂ -Fue	-		0.00		7.63	CO2	13
CO ₂ - Line	0.20	0.00	0.20	0.00	0.40	CH	10
coj - orea	30.07	0.00	0.00	0.00	30.07	N ₂ O	94
CH4 - Field burning	99.33	0.00	0.00	0.00	99.35		
CH ₄ - Fuel					0.02		
N ₂ O - Fertiliser	49.97	35.40	0.00	226.54	311.91	Breakd	own of
N ₂ O - Atmospheric Deposition	5.50	3.89	0.00	24.92	34.31	oreana	
N ₂ O - Field Burning	36.09	0.00	0.00	0.00	36.09	Scope	1 GHGs
N2O - Crop Residues	120.05	18.88	57.92	196.97	393.83	1	11%
N ₂ O - Leaching and Runoff	0.00	7.10	15.29	122.36	144.75		9% ac
N ₂ O - Fuel					0.05		-
Scope 1 Total	348	65	73	571	1,065		
						90%	
Scope 2 Emissions (off-farm)						00%	
Electricity					3.24		
Scope 2 Total					3.24		
Scope 3 Emissions (pre-farm)							
Fertiliser (urea + Superphosphate)					90.83		
Herbicides/pesticides					0.29		
Electricity					0.36		
Fuel					0.40		
Lime					0.01		
Scope 3 Total					92		
Carbon Sequestration							
Carbon sequestration in trees	-16.40	-6.84	-1.37	-2.73	-27.34		
Net Farm Emissions	335	58	72	568	1,133		
Emissions intensity		0.07	0.04	6 19	CO2 elt crop		
Emissions inclusity	0.11	0.02	0.04	0.19	rcoz-ercrop		

- Carbon stocks and fluxes
 - Direct measurement

or

- FullCam model
 - Soil carbon
 - Vegetation carbon

www.piccc.org.au/Tools

Carbon Neutral Accounting Dynamic accounting

- Talaheni Yass
 - Low stocked wool
 - Lower methane
 - Significant land restoration
 - Tree planting, natural regeneration, erosion control
- Jigsaw Farms Hamilton
 - High stocked beef and sheep
 - Significant tree planting
 - Salinity control
 - Carbon offset planting
 - Biodiversity

