

# Legume establishment in southern and central Queensland.

Focussed on the Brigalow Belt

**12 November 2024** 

**Gavin Peck** 

Queensland Pasture Resilience Program







Australian Governmen

## **Legume establishment Part 1:**



Australian Government

MEAT & LIVESTOCK AUSTRALIA





Legume content for high production

Research results - legume establishment

• Commercial results

Brigalow belt compared to other climate zones

• Storing soil moisture is critical

Establishment in different pasture situations





## Legumes - "Huge potential"

Improved animal performance LWG (diet quality)

- Stylos (in native pastures): additional 40-60 kg/head/yr
- Leucaena: additional 60-90 kg/head/yr

Nitrogen fixation and cycling

- Leads to improved grass growth and better quality
  - o 40-100% in "rundown project" trials
  - o 10-30% in native pastures

Higher productivity

- Up to 60-160% increase in live-weight gain per hectare
- Doubling of gross margins





## Successful legume establishment?

### High production needs high legume content!

**Rules of thumb:** 

# Need the paddock to *look like* about 50% legume



- >10% of total DM production to get an animal live-weight gain response (Orr, 2005)
- 20-50% of total DM produced coming from the legume to maximise production
- > 4 plants /m<sup>2</sup> (depends on the size of individual plants of different legume species) (Orr, 2005)
- Need good plant nutrition for high production





## **Research results in the Brigalow Belt**

Establishing legumes into competitive grass pastures

## 6 Agronomy trials:

- Location: Wandoan, Goondiwindi, St George
- Soils: Brigalow clay, Poplar Box (loamy soils)







## Fallowing and seed bed preparation trials

| Fallow period    | Seedbed treatment    | Post plant weed control |  |  |
|------------------|----------------------|-------------------------|--|--|
| No disturbance   | None                 | Nil                     |  |  |
| Disturb at plant | Slash                | Nil                     |  |  |
|                  | Deep rip             | Nil                     |  |  |
|                  | Cultivate (tynes)    | Nil                     |  |  |
|                  | Cultivate (discs)    | Nil                     |  |  |
|                  | Spray                | Nil                     |  |  |
| Short fallow     | Zero tillage         | +/- Selective herbicide |  |  |
| (2-4 months)     | Cultivate            | +/- Spinnaker           |  |  |
|                  | Cultivate then spray | +/- Selective herbicide |  |  |
| Medium fallow    | Zero tillage         | +/- Selective herbicide |  |  |
| (4-6 months)     | Cultivate            | +/- Spinnaker           |  |  |
| Long fallow      | Zero tillage         | +/- Selective herbicide |  |  |
| (9-12 months)    | Zero tillage         | Selective herbicide 2   |  |  |
|                  |                      | summers                 |  |  |
|                  | Cultivate            | +/- Spinnaker           |  |  |
|                  | Cultivate            | Spinnaker 2 summers     |  |  |

## Fallowing and seed bed preparation trials



MEAT & LIVESTOCK AUSTRALIA Queensland G

# Can you spot the legume?

## Single pass rip at planting

## A closer look.



## Same day, medium fallow plot...







Australian Government MEAT & LIVESTOCK AUSTRALIA



8

## **Establishment methods**

#### **Goondiwindi Clay – Pasture Dry Matter at 24 mths**









Queensland Governmen



Two sources of moisture for legume seedlings:

- Rain
- Stored soil moisture

#### Stored soil moisture





## **Stored moisture is critical!**



## Moisture matters...

Relying only on rain, <u>seedlings struggle</u> to compete with deep grass roots.

## Seedlings die when they run out of water...

...and the chance of enough <u>follow-up rain</u> soon enough is <u>slim</u>...





## **Brigalow Belt: Unique Climate**



| Code | Name                        |
|------|-----------------------------|
| Α    | Very cold                   |
| В    | Cold                        |
| С    | Cool, dry                   |
| D    | Cool, wet                   |
| E    | Warm, seasonally<br>wet/dry |
| F    | Warm, wet                   |
| G    | Warm to hot, very<br>dry    |
| Н    | Hot, dry                    |
| I    | Hot, seasonally<br>wet/dry  |
| J    | Hot, wet                    |





mla

Australian Government

## **Brigalow Belt: Unique Climate**

| Code       | Agro-climate                            |
|------------|-----------------------------------------|
| E3         | Most plant growth in summer, although   |
|            | summers are moisture limiting.          |
|            | Temperature limits growth in winter     |
|            | Growth is limited by moisture rather    |
| E/I        | than temperature and the winters are    |
| E4         | mild. Growth is relatively even through |
|            | the year                                |
| 67         | Moisture is the main limit on crop      |
| <b>E</b> 7 | growth. Growth index lowest in spring   |
|            | Monsoonal. Plant growth determined by   |
| 13         | moisture availability. This has cooler  |
|            | winters than I1 and I2 with a growing   |
|            | season lasting at least six months      |

Agro-climatic classes



Hutchinson et al 2005

## Challenging climate for sowing legumes

#### For summer-dominant rainfall areas

Minimum = How often (% years) do we receive minimum germination rain (25 mm / 3 days)? Good = How often (% years) do we receive good germination rain (50 mm / 5 days)?

| Normanton (FNQ)          | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Minimum germination rain | 96  | 92  | 83  | 26  | 5   | 11  | 3   | 1   | 4   | 7   | 45  | 86  |
| Good germination rain    | 88  | 83  | 68  | 15  | 1   | 5   | 2   | 0   | 1   | 3   | 19  | 69  |
|                          |     |     |     |     |     |     | -   |     |     |     |     |     |
| Banana (CQ)              |     |     |     |     |     |     |     |     |     |     |     |     |
| Minimum germination rain | 76  | 72  | 53  | 30  | 39  | 41  | 28  | 19  | 26  | 56  | 68  | 77  |
| Good germination rain    | 48  | 51  | 33  | 9   | 17  | 16  | 13  | 6   | 9   | 22  | 43  | 44  |

| St George (SQ)           |    |    |    |    |    |    |    |    |    |    |    |    |
|--------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Minimum germination rain | 57 | 52 | 49 | 30 | 38 | 36 | 29 | 22 | 30 | 36 | 41 | 53 |
| Good germination rain    | 36 | 33 | 19 | 12 | 18 | 11 | 9  | 6  | 12 | 12 | 19 | 26 |

Low risk Acceptable risk High risk Extreme risk

https://climateapp.net.au/







# **3. Sowing time – planting window with stored moisture** (Summer growing)



Minimum: How often (% years) do we receive minimum germination rain (25mm/3days)?

Good: How often (% years) do we receive good germination rain (50mm/5days)?

| GOONDIWINDI              | Jan – Feb – Mar |
|--------------------------|-----------------|
| Minimum germination rain | 94              |
| Good germination rain    | 73              |

| MILLMERRAN               |    |
|--------------------------|----|
| Minimum germination rain | 98 |
| Good germination rain    | 87 |

| DALBY                    |    |
|--------------------------|----|
| Minimum germination rain | 94 |
| Good germination rain    | 79 |









## **Broadcast or drill????** Trial results

### Benefits from drilling

- Loamy soils hardsetting or crusting
- Firm surfaces Zero Tilled fallows
- High pasture or stubble cover e.g. undisturbed pasture

### Negative results from drilling

- Seed can be sown too deep soft soils, machinery sinking
- Fluffy soils where raindrop impact fills in furrows

No real difference

- Clay soils self mulching soils without high stubble cover
- Cultivated and/or fallowed seed-beds





## **3.2 Soil surface condition**

#### "Fine but firm"

• Fluffy soil is prone to crusting, drying too quickly and hard to control depth

#### **Ground cover**

- Retains surface moisture longer
- Reduces surface temperature
- Can reduce seed to soil contact
- Impact post emergence weed control

#### Avoid crusting on susceptible soils

- Don't cultivate excessively
- Ground cover (raindrop impact)
- Surface roughness









Seedlings in wheel tracks

## **Crusting soils - challenge**





## **Crusting soils - challenge**



## Establishment method – trade offs

Cultivated or herbicide fallows (whole paddock):

Highest cost = commercially most reliable

No fallows (no disturbance or one pass cultivations):

Lowest cost = un-reliable

Low legume numbers = negative returns

#### Strips (cultivated or herbicide):

compromise between cost & reliability

**\$\$\$** Economic analysis:

- Higher cost establishment is justified because of higher returns and reduced risk
- Quicker establishment generally higher overall returns (NPV)
- Fallowed strips may give higher B/C ratios than whole paddock





## Most common legume establishment methods

#### Industry routinely recommends and uses

### low cost = *low reliability* establishment techniques

Most commonly used (& recommended) techniques are:

- Broadcast or fly into existing grass with no seedbed preparation
- One pass cultivation while seeding





Fallow Period:

## **Poor recommendations**

Most commonly used (and recommended) techniques:

Have <u>failed</u> to produce good legume establishment when sown into competitive grass pastures in <u>most</u> years in the Brigalow belt

But... more successful in monsoonal or coastal environments



## Legume BMP planning timeline

| K<br>gra                     | ill Sc<br>ass                      | ow Emer                                      | gence High                                                  | seed production                                               | High pasture<br>production                       |
|------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|
| 1. Initial<br>planning       | 2. Seedbed<br>/Fallow              | 3. Sowing                                    | 4. Early growth                                             | 5. Survival & thickening-up                                   | 6. Long-term<br>production                       |
| 1.Which<br>paddock<br>2.What | 1.Kill grass<br>(weeds)<br>2.Store | 1.Timing<br>2.Soil surface<br>3.Seed quality | Aim: large plants<br>setting seed before<br>end of growing  | Aim: High density,<br>seed production and<br>managed grazing. | Aim: High production<br>and persistence          |
| legume<br>3.What             | moisture<br>3.Reduce               | and rate<br>4.Rhizobia                       | season.                                                     | 1.Grazing                                                     | 1.Manage grazing to optimise legume              |
| method                       | seed bank<br>4.Fertilise           | 5.Sowing<br>method                           | <ol> <li>Weeds</li> <li>Grazing</li> <li>Insects</li> </ol> | management<br>2.Weeds                                         | content<br>2.Fertilise to maintain<br>production |





## What method: Good condition sown grasses





#### Sown grass pasture in good condition

#### Good grass species

- Keep the grass
- Establish legumes in strips •

#### High grass competition

Long fallows

#### Arable

Either cultivation or zero tillage •







## What method: Poorer condition sown grasses



#### Sown grass pasture in poorer condition

• Rundown and declined land condition

#### Grass species

- Patchy? Poorer grasses?
- Renovate whole paddock
- Sow grass seed

"Moderate" grass competition, moderate water holding soil

Medium fallows (whole paddock)

#### Soil surface condition

• Scalded/crusted – surface roughness





## What method: Non-arable land



#### Machinery access:

- Work on accessible bits
  - Pilot plots
  - Strips between trees/rocks
  - Spread can be slow
- Low grass competition
  - Broadcast after minimal disturbance (e.g. fire)

Things to consider:

- Why it is non-arable, broadly:
  - Machinery access: Rocky, Steep, Trees
  - Erosion risk: Erodible surface, erodible sub-soil, steep
- Grass competition
- Seed to soil contact

#### **Erosion risk:**

- Erodible surface: Maintain cover
  - Minimum or zero tillage
  - Strips on the contour
  - One pass planting
- Erodible sub-soils: do not expose
  - Shallow cultivation only
  - Maintain cover
  - Do not use long fallows

## What method: High risk, low production potential



#### Sodic duplex

- Legume adaptation?
- Gullying and scalding risk •

#### Steep lands

- **Erosion risk**
- Shallow soils

#### Focus on other paddocks







Australian Governmen

## Legume recommendations and SUMMARY!!

#### The right legume in the right situation

- Climate
- Soil
- Persistent and productive

#### **Good establishment**

- Good agronomy:
  - > More water, more often and more of it used to grow legumes
  - Fertiliser if needed
- Managed grazing allow legumes to fully establish

#### **High long-term production**

- Appropriate grazing management
- Soil fertility most commonly Phosphorus and Sulphur





## Legume workshop

### Addresses each step in the –' Legume BMP timeline':

- Principles and management recommendations
- Document legume management plans for your property

Next Workshop: Miles, 20<sup>th</sup> November

**FutureBeef events page** 



#### **Productive & Persistent Legume Pastures**

"Making legumes work for you"

Wednesday 20<sup>th</sup> November 2024 at Miles 8.30 am to 4.30 pm

Learn about the latest science and 'how-to' for the best legume pastures

- Reliable techniques to successfully establish legumes into existing improved pastures.
- How to select the right legume for your situation.
- Tips for managing legume-grass pastures for long term productivity and drought resilience
- Develop an action plan for your pasture legume establishment. Bring your soil test results if you would like to discuss them.
- ✓ Personalised, one-on-one support for new paddock sowings.
- Interactive learning workshop
- Presented by Queensland Department of Agriculture and Fisheries' sown pastures specialists.





Registration essential for catering and provision of workshop material. Free admission. Limited spaces available. Smoko and lunch provided.

Register here: https://www.trybooking.com/CVNVH or for further information email: vanessa.macdonald@daf.gld.gov.a



This event is delivered through the Queensland Pasture Resilience Program, which is a partnership between the Department of Agriculture and Fisheries Meat & Livestock Australia and the Australia Government through the MIA Donor Company

Register by Wed 13<sup>th</sup> Nov

#### **Queensland Pasture Resilience Program**







## More information:

FutureBeef webpage: <u>https://futurebeef.com.au/</u>

Dedicated legumes content being developed •

### **Queensland Pasture Resilience Program**

- More info on FutureBeef webpage ٠
- "Queensland pastures newsletter" ٠



- Call: 13 25 13 ٠
- Email: info@daf.qld.gov.au ۲









## Conclusions

#### Plant legumes

• Well adapted, productive varieties available

Poor establishment is the most common reason for failure

- High legume content = high production
- Very low legume density = no animal production gains

## Multiple steps to *reliably* establishing and maintaining productive legume pastures

- Spend more time and effort
- Stored soil moisture is critical in the Brigalow Belt





## **Questions??**







Australian Government

MEAT & LIVESTOCK AUSTRALIA