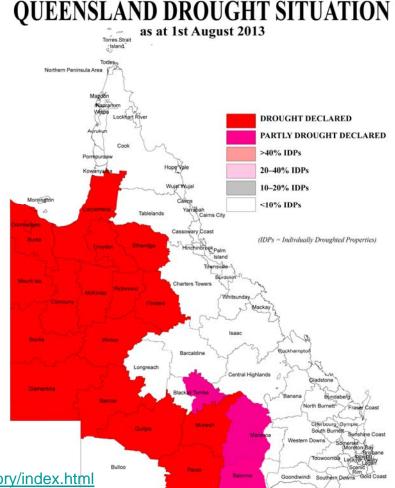
Climate risk management A Queensland perspective (September 2013)

Questions, comments?

Type your questions here anytime

File View Help	
 Audio 	
 Telephone Mic & Speakers 	
Dial: 1 800 9 Access Code: 288-349 Audio PIN: 101	
If you're already on the call, pre-	ss #101# now.
 Questions 	٦
	~
[Enter a question for staff]	~
[Enter a question for staff]	~
[Enter a question for staff]	Send
[Enter a question for staff] Webinar Now Webinar ID: 248-976-	.062


Today's topics

- Our variable climate
- Key drivers of that variability
- Seasonal outlooks
- Using climate information
- Available tools and more information

Examples of a variable climate

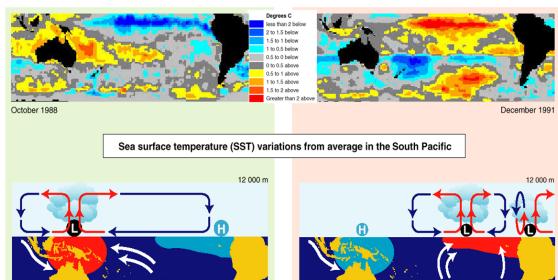
 Severe drought and resulting land degradation events have been recorded in Australia during the 1890's, 1920's, 1930's, 1940's, 1950's, 1960's, 1970's and 1980's (McKeon et al., 2004)

http://www.longpaddock.qld.gov.au/about/publications/learningfromhistory/index.html

Key climate drivers include

- El Nino/Southern Oscillation
- Pacific Decadal Oscillation
- Indian Ocean Dipole
- Madden-Julian
 Oscillation

http://www.bom.gov.au/watl/about-weather-and-climate/australian-climate-influences.shtml


La Niña/El Niño (ENSO)

The Walker Circulation

Positive SOI - La Niña

Negative SOI - El Niño

- Coupled global ocean and atmospheric system
- Changes in SST patterns along the equatorial Pacific drive changes in the global circulation patterns such as the Walker Circulation that influence our local climate

Air Pressure

Highe

SSTs affect position of low pressure zones in the Walker Circulation

Surface Wi

La Niña/El Niño historical rainfall

 Typically El Niño events are associated with below median rainfall

 Typically La Niña events are associated with above median rainfall

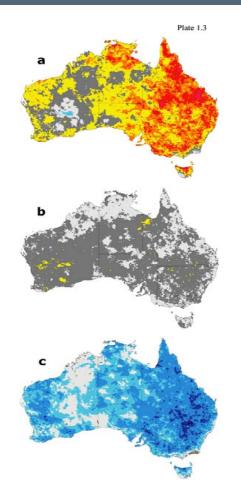
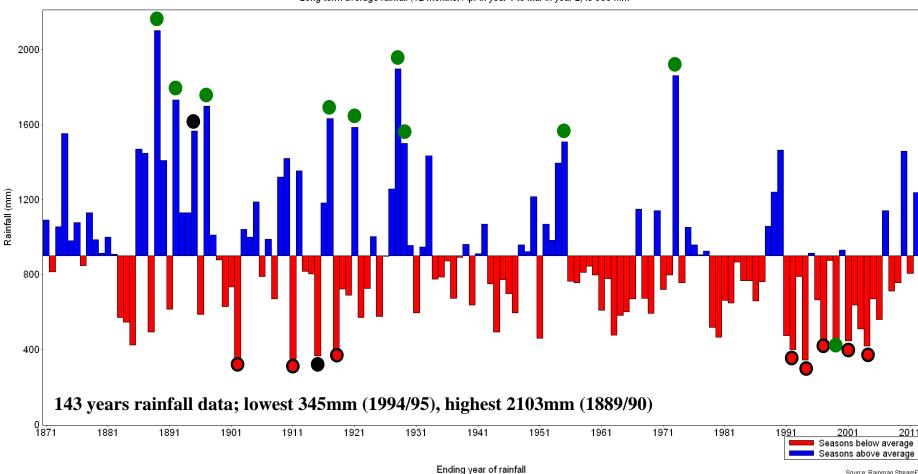



Plate 1.3 Percentage of years exceeding median annual rainfall (1 April to 31 March) for three year-types: (a) 'EI Niño', (b) 'neutral' and (c) 'La Niña'. Years were classified based on the average June to November SOI (from 1890 to 2002): EI Niño years, SOI \geq -5.5 (29 years); neutral years -5.5 < SOI < +5.5 (59 years); La Niña years SOI \geq +5.5 (25 years).

The historical context

Long-term average rainfall (12 months, Apr in year 1 to Mar in year 2) is 900 mm

Seasonal rainfall (12 months, Apr in year 1 to Mar in year 2) at ROCKHAMPTON AMO COMPOSITE*

Department of Science, Information Technology, Innovation and the Arts

Source: Rainman StreamFlow

The Southern Oscillation Index (SOI)

 The SOI can be simply referred to as the difference in barometric air pressure between Darwin and Tahiti

 Correlations between annual SOI and annual rainfall can be used to explain as much as 60% of the variance in eastern Australia rainfall (Partridge, 2001)

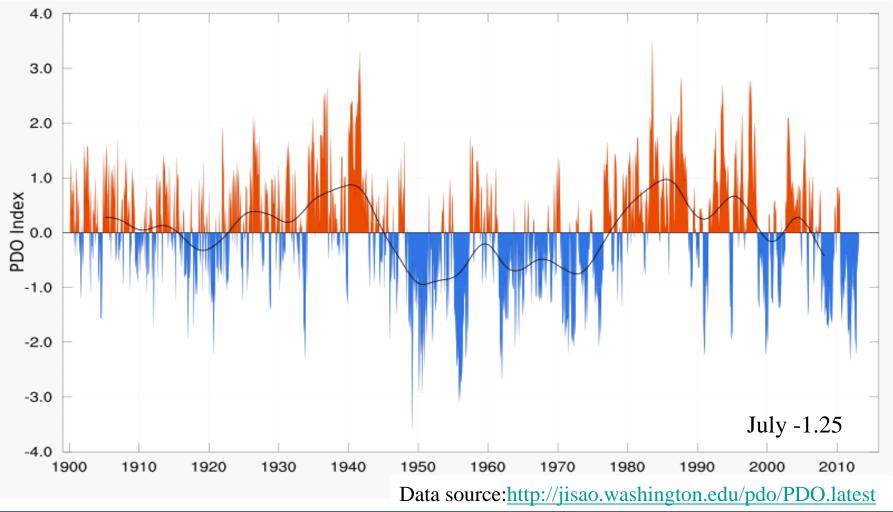
www.longpaddock.qld.gov.au/seasonalclimateoutlook/southernoscillationindex/soidatafiles/index.php

SOI and rainfall

• Example of SOI impact on number of rain day events at Bungunya (south west Darling Downs).

Median numbers of days per year at Bungunya with daily rainfall equal to or greater than	Years with the SOI below minus 5	All Years	Years with the SOI above plus 5
1mm	43 days	48 days	59 days
8mm	18 days	20 days	26 days
20mm	6 days	8 days	9 days
30mm	2 days	3 days	5 days
(Data Source: Rainman StreamFlow)			

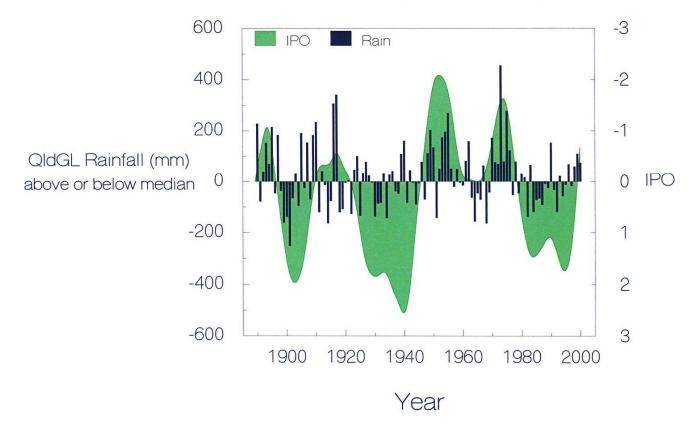
Pacific Decadal Oscillation (PDO/IPO)



Pacific Decadal Oscillation (PDO/IPO)

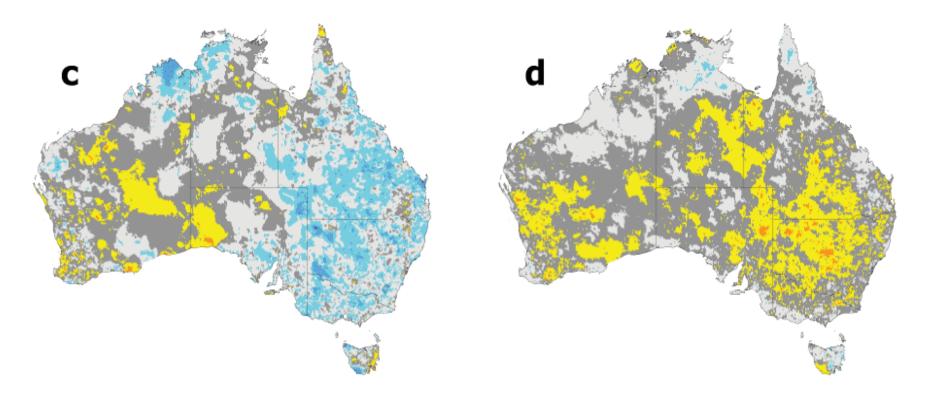
- Is a long-lived ENSO-like pattern of Pacific climate variability. (similar spatial climate fingerprints - very different behaviour in time).
- Moderates the effect of ENSO

PDO/IPO



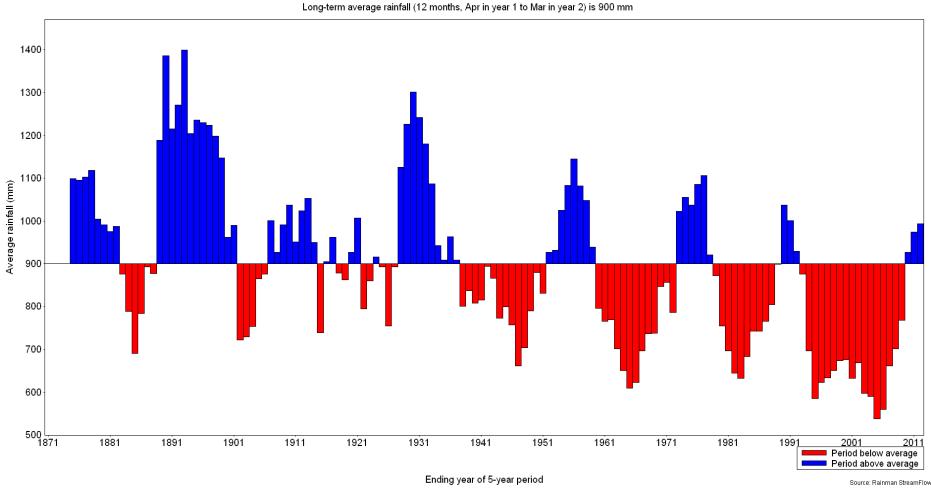
PDO/IPO influence

Qld Grazing Lands Rainfall


and Inter-Decadal Pacific Oscillation

Queensland

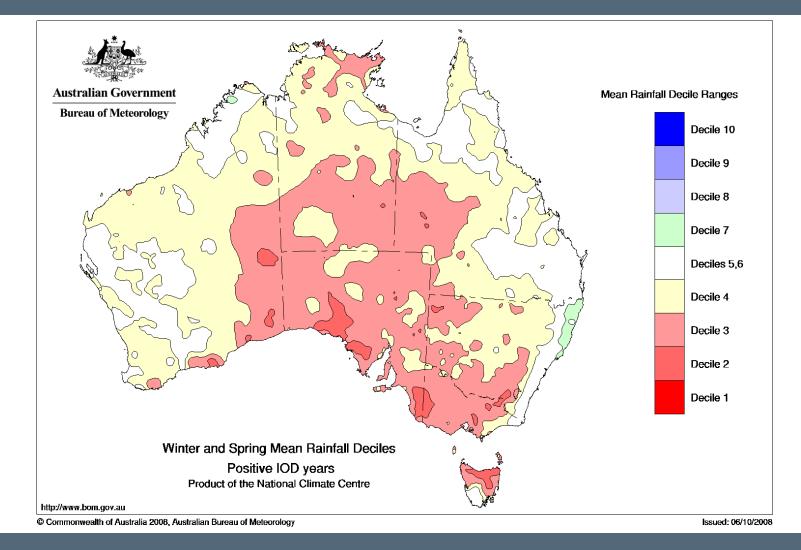
PDO/IPO influence


• c is SOI neutral, IPO negative. d is SOI neutral, IPO positive. Years 1890 to 1997 (McKeon et al., 2004).

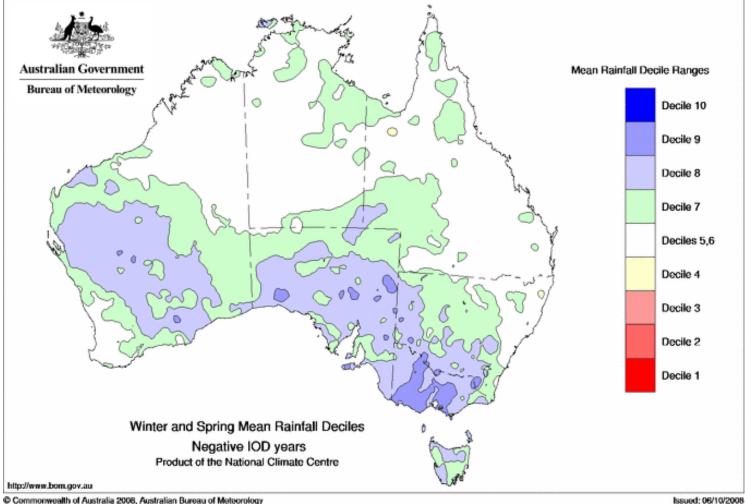
PDO/IPO influence

5-year moving average rainfall (12 months, Apr in year 1 to Mar in year 2) at ROCKHAMPTON AMO COMPOSITE* Long-term average rainfall (12 months, Apr in year 1 to Mar in year 2) is 900 mm

Department of Science, Information Technology, Innovation and the Arts


Queensland

- Influence during May to November
 - Positive IOD events have been associated with drier conditions over much of southern and central Australia
 - Negative IOD events have been associated with wetter conditions particularly south east Australia (Saji et al. 1999)


http://www.bom.gov.au/climate/IOD/about_IOD.shtml

Department of Science, Information Technology, Innovation and the Arts

Queensland

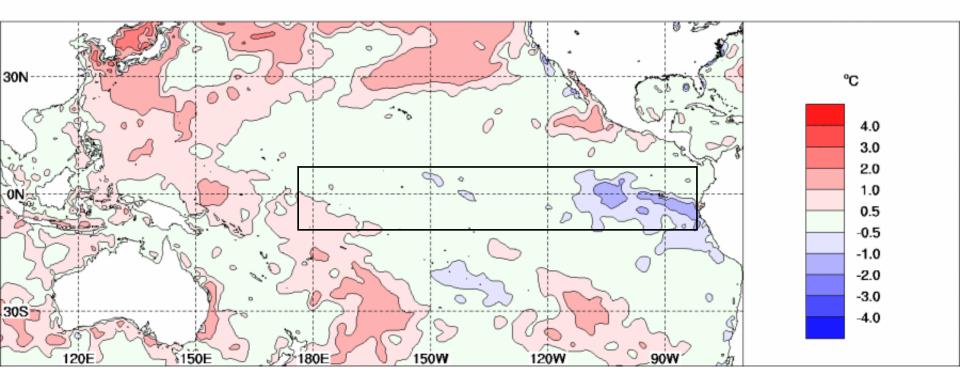
Department of Science, Information Technology, Innovation and the Arts

1:06/10/2008

Questions, comments?

Type your questions here anytime

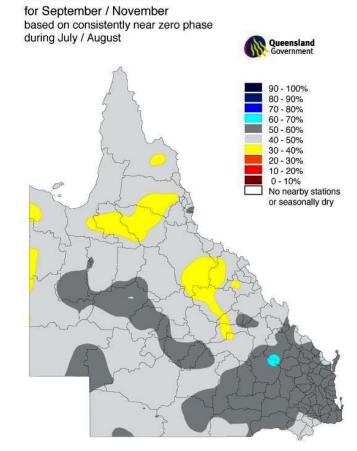
File View Help	
 Audio 	
 Telephone Mic & Speakers 	
Dial: 1 800 9 Access Code: 288-349 Audio PIN: 101	
If you're already on the call, pre-	ss #101# now.
 Questions 	٦
	~
[Enter a question for staff]	~
[Enter a question for staff]	~
[Enter a question for staff]	Send
[Enter a question for staff] Webinar Now Webinar ID: 248-976-	.062



Current outlook

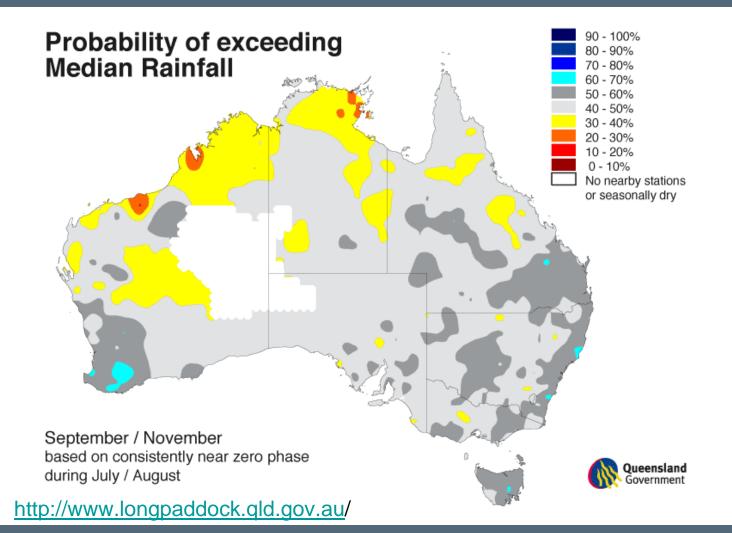
Current SST

SSTA 1.0X1.0 NMOC OCEAN ANOMALIES (C) 20130801 20130831



SOI phase - Qld

 Based on a 'Consistently Near Zero' SOI phase at the end of August there is a 40 to 60% (or near average) chance of getting median rainfall during September to November throughout Queensland.

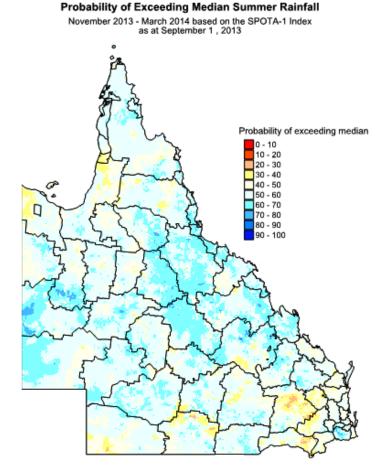

http://www.longpaddock.qld.gov.au/

Probability of exceeding Median Rainfall

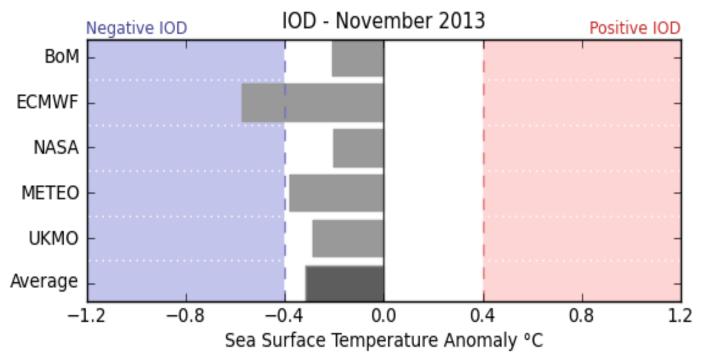
SOI phase - Australia

SOI phase - Roma

Chance of rainfall at ROMA A	IRPORT COMP	OSITE*				
Analysis of historical data (1878	to 2013) using	SOI Phases: J	ul to Aug Leadti	me of 0 months		
The SOI phases/rainfall relations	ship for this seas	son is statistica	ally doubtful beca	iuse KW test		
is above 0.9 but Skill Score (7.1	1) is below 7.6 (p	o = 0.88).				
Rainfall period: Sep to Nov	SOI falling	SOI negative	SOI neutral	SOI rising	SOI positive	All years
% yrs with at least 291 mm	8	0	4	4	10	5
240 mm	15	0	7	16	20	11
190 mm	23	9	16	24	37	21
140 mm	46	14	51	44	53	44
100 mm	54	45	71	72	67	64
60 mm	62	86	87	96	93	87
42 mm	85	86	98	96	100	95
% yrs above median 124 mm	46	27	58	52	53	50
KS/KW probability tests	KS=0.78	KS=0.99	KS=0.73	KS=0.57	KS=0.94	KW=0.96
Significance level	Not significant	**	Not significant	Not significant	#	
Years in historical record	13	22	45	25	30	135
Highest recorded (mm)	317	227	301	303	337	337
Lowest recorded (mm)	22	12	33	39	43	12
Median rainfall (mm)	117	84	145	135	143	124
Average rainfall (mm)	131	98	136	147	166	138

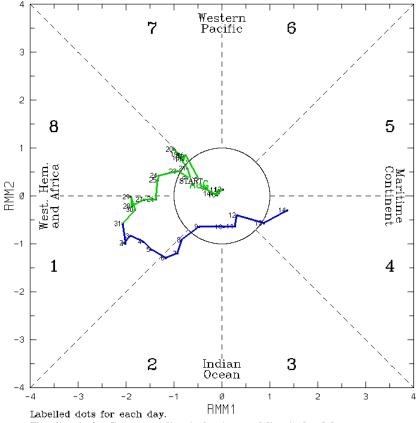


SPOTA-1 based forecast


SPOTA-1 (Seasonal Pacific Ocean Temperature Analysis version 1) monitors Pacific Ocean sea surface temperatures (SSTs) from March to October each year and, on this basis, provides long-lead 'outlooks' for Queensland summer (November to March) rainfall.

http://www.longpaddock.qld.gov.au/spota1-getpassword

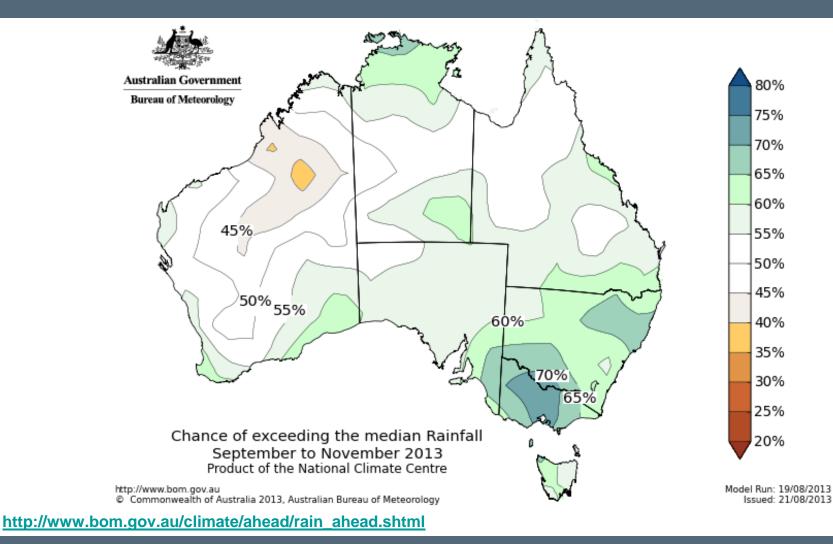
- Currently neutral
- http://www.bom.gov.au/climate/enso/


© Copyright Australian Bureau of Meteorology

MJO - 14/09/13

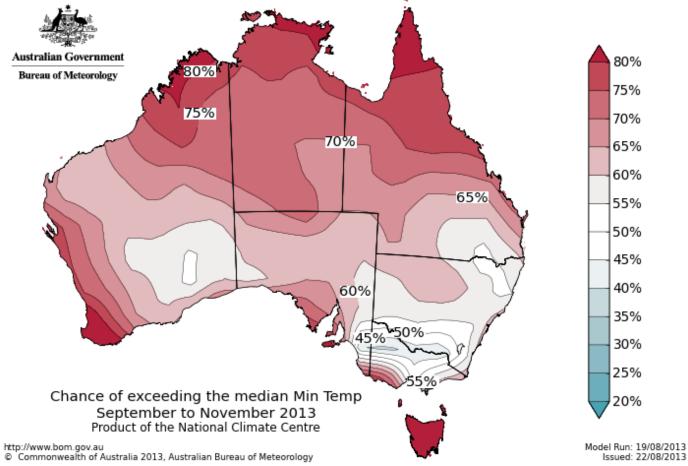
 The MJO is a band of low air pressure which originates off the east coast of central Africa.

 For information and updates on its current location try <u>www.bom.gov.au/climate/mjo/</u> (RMM1,RMM2) phase space for 6-Aug-2013 to 14-Sep-2013



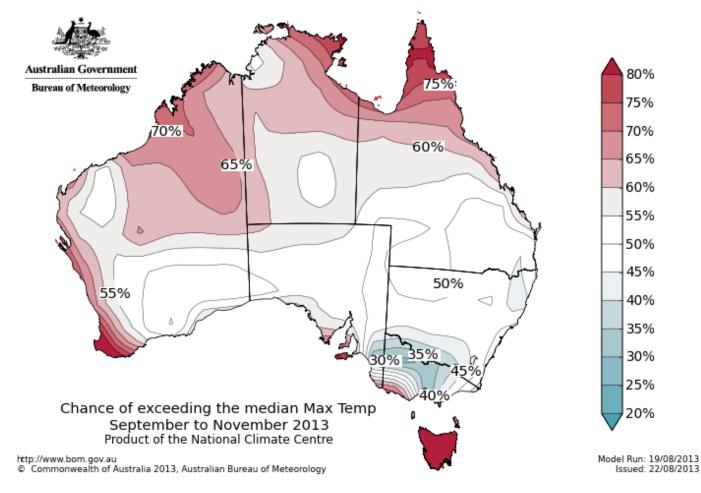
Blue line is for Sep, green line is for Aug, red line is for Jul.

(C) Copyright Commonwealth of Australia 2013. Bureau of Meteorology



POAMA – rainfall outlook

POAMA - Min temp outlook



Issued: 22/08/2013

http://www.bom.gov.au/climate/ahead/temps_ahead.shtml

POAMA - Max temp outlook

http://www.bom.gov.au/climate/ahead/temps_ahead.shtml

Department of Science, Information Technology, Innovation and the Arts

Queensland

Sources of information

- Climate information
 - <u>www.longpaddock.qld.gov.au</u>
 - <u>www.bom.gov.au/climate/enso</u>
 - <u>www.cpc.ncep.noaa.gov/</u>
- How farmers have used climate information
 - <u>www.climatekelpie.com.au/ask-a-farmer/climate-champion-program</u>
- Climate tools
 - Rainman Streamflow, HowWet?, Whopper Cropper www.daff.qld.gov.au
 - MLA Rainfall to pasture growth outlook tool <u>www.mla.com.au/News-and-resources/Tools-and-calculators/Rainfall-to-pasture-growth-outlook-tool</u>
- Other drivers of our climate and weather
 - <u>www.bom.gov.au/watl/about/index.shtml</u>

Using climate information

- So how do I use this information?
 - Be sure of your source of information
 - Identify when key climate transition periods are
 - Identify when information has skill
 - Relate these to your production system
 - key decision making periods
 - seasonal conditions to date
 - period of climate risk approaching
 - potential cost or benefit of making a decision

Decision making example

- Darling Downs winter stocking rate decision
 - Rainfall recorded during summer
 - Forage/pasture availability
 - Soil moisture profile level
 - Seasonal outlook
 - Major risks (ENSO)
 - Rainfall
 - Temperature
 - Other opportunities/risks (markets, seasonal conditions other areas etc)

Dave McRae Science Delivery Division, DSITIA

Telephone: 07 4529 1343 Email: <u>david.mcrae@science.dsitia.qld.gov.au</u> Mobile: 0409 485 007

PO Box 102, Toowoomba Qld 4350

